Traces of pluriharmonic functions

  • Paolo de Bartolomeis
  • Giuseppe Tomassini
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 798)


Complex Manifold Real Distribution Hermitian Structure Stein Manifold Levi Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    AUDIBERT T.: Opérateurs differentiels sur la sphère de ¢n caractérisant les restrictions des fonctions pluriharmoniques, Th. 3.ème c. Univ. de Provence, U.E.R. Math.Google Scholar
  2. [2]
    BEDFORD E., FEDERBUSH P.: Pluriharmonic boundary values, Tohoku Math.J.26 (1974), 505–511.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    KOHN J.J.: Harmonic integrals on strongly pseudo-convex manifolds I-II,Ann. of Math. 78 (1963), 112–148 and 79 (1964), 450–472.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    KOHN J.J., ROSSI U.: On the extension of holomorphic functions from the boundary of a complex manifold Ann. of Math. 81 (1965), 451–473.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    ŁOJASIEWICZ S., TOMASSINI G.: Valeurs au bord des formes holomorphes, in: Several Complex Variables, Proceedings of International Conferences, Cortona, Italy 1976–1977, Scuola Normale Superiore, Pisa (1978), 222–245.Google Scholar
  6. [6]
    RIZZA G.B.: Dirichlet problem for n-harmonic functions and related geometrical properties Math. Ann. 130 (1955), 202–218.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Paolo de Bartolomeis
    • 1
  • Giuseppe Tomassini
    • 1
  1. 1.Istituto Matematico "Ulisse Dini"Università di FirenzeFirenzeItalia

Personalised recommendations