Skip to main content

Sums of digits and the Hurwitz zeta function

  • Conference paper
  • First Online:
Analytic Number Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1434))

Abstract

Let s 2(n) denote the sum of the binary digits of n. Then it is easily seen that

$$\sum\limits_{n = 1}^{ + \infty } {\frac{{s_2 (n)}}{{n(n + 1)}} = 2Log2.}$$

We prove that, if s B (n) is the sum of the digits of n in base B, and if a w,B (n) is the number of (possibly overlapping) occurrences of the word w in the B-ary expansion of n, then the series

$$\sum\limits_{n = 1}^{ + \infty } {s_B (n)\left( {\frac{1}{{n^s }} - \frac{1}{{(n + 1)^s }}} \right) } and \sum\limits_{n = 1}^{ + \infty } {a_{w,B} (n)\left( {\frac{1}{{n^s }} - \frac{1}{{(n + 1)^s }}} \right) }$$

can be expressed in terms of the Riemann zeta function or of the Hurwitz zeta function.

This allows us to show that

$$\sum\limits_1^{ + \infty } {\frac{{s_B (n)}}{{n(n + 1)}} = \frac{B}{{B - 1}}LogB}$$

but also to give formulas like

$$\sum\limits_1^{ + \infty } {\frac{{s_2 (n)(2n + 1)}}{{n^2 (n + 1)^2 }} = \frac{{\pi ^2 }}{9}.}$$

Moreover we give a general expression for the series

$$\sum\limits_{n = 1}^{ + \infty } {\frac{{a_{w,B} (n)}}{{n(n + 1)}}.}$$

For example one has:

$$\sum\limits_{n = 1}^{ + \infty } {\frac{{a_{11,2} (n)}}{{n(n + 1)}} = \frac{3}{2}Log2 - \frac{\pi }{2}} and \sum\limits_{n = 1}^{ + \infty } {\frac{{a_{01,2} (n)}}{{n(n + 1)}} = \frac{1}{2}Log2 + \frac{\pi }{4}.}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. CHRISTOL, T. KAMAE, M. MENDES FRANCE and G. RAUZY, Suites algébriques, automates et substitutions, Bull. Soc. Math. France, 108, 1980, p. 401–419.

    MathSciNet  MATH  Google Scholar 

  2. A. ERDELYI, W. MAGNUS, F. OBERHETTINGER and F.G. TRICOMI, Higher transcendental functions, Mc Graw Hill, New-York, 1953, vol. I.

    MATH  Google Scholar 

  3. L.F. KLOSINSKI, G.L. ALEXANDERSON and A.P. HILLMAN, The William Lowell Putnam Mathematical Competition, Am. Math. Monthly 89, 1982, p. 679–686.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.E. KNUTH, Fundamental Algorithms, the Art of Computer Programming, Addison-Wesley, vol. 1., 1981.

    Google Scholar 

  5. J. SHALLIT, Advanced Problem 6450, Am. Math. Monthly 91, 1984, p. 59–60. Solution appeared in Am. Math. Monthly 92, 1985, p. 513–514.

    Article  MathSciNet  Google Scholar 

  6. E.T. WHITTAKER and G.N. WATSON, A course of modern analysis, 1978, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kenji Nagasaka Etienne Fouvry

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Allouche, JP., Shallit, J. (1990). Sums of digits and the Hurwitz zeta function. In: Nagasaka, K., Fouvry, E. (eds) Analytic Number Theory. Lecture Notes in Mathematics, vol 1434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0097122

Download citation

  • DOI: https://doi.org/10.1007/BFb0097122

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52787-9

  • Online ISBN: 978-3-540-47147-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics