Skip to main content

An introduction to the Discontinuous Galerkin method for convection-dominated problems

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1697))

Abstract

In these notes, we study the Runge Kutta Discontinuous Galerkin method for numericaly solving nonlinear hyperbolic systems and its extension for convection-dominated problems, the so-called Local Discontinuous Galerkin method. Examples of problems to which these methods can be applied are the Euler equations of gas dynamics, the shallow water equations, the equations of magneto-hydrodynamics, the compressible Navier-Stokes equations with high Reynolds numbers, and the equations of the hydrodynamic model for semiconductor device simulation. The main features that make the methods under consideration attractive are their formal high-order accuracy, their nonlinear stability, their high parallelizability, their ability to handle complicated geometries, and their ability to capture the discontinuities or strong gradients of the exact solution without producing spurious oscillations. The purpose of these notes is to provide a short introduction to the devising and analysis of these discontinuous Galerkin methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.L. Atkins and C.-W. Shu. Quadrature-free implementation of discontinuous Galerkin methods for hyperbolic equations. ICASE Report 96-51, 1996. submitted to AIAA J.

    Google Scholar 

  2. F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2d Euler equations. J. Comput. Phys. to appear.

    Google Scholar 

  3. F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys, 131:267–279, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bassi, S. Rebay, M. Savini, G. Mariotti, and S. Pedinotti. A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. Proceedings of the Second European Conference ASME on Turbomachinery Fluid Dynamics and Thermodynamics, 1995.

    Google Scholar 

  5. K.S. Bey and J.T. Oden. A Runge-Kutta discontinous Galerkin finite element method for high speed flows info AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 24–27, 1991.

    Google Scholar 

  6. R. Biswas, K.D. Devine and J. Flaherty. Parallel, adaptive finite element methods for conservation laws. Applied Numerical Mathematics, 14:255–283, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Chavent and B. Cockburn. The local projection p 0 p 1-discontinuous-Galerkin finite element method for scalar conservation laws. M 2 AN, 23:565–592, 1989.

    MathSciNet  MATH  Google Scholar 

  8. G. Chavent and G. Salzano. A finite element method for the 1d water flooding problem with gravity. J. Comput. Phys, 45:307–344, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Chen, B. Cockburn, C. Gardner and J. Jerome., Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comput. Phys, 117:274–280, 1995.

    Article  MATH  Google Scholar 

  10. Z. Chen, B. Cockburn, J. Jerome and C.-W. Shu. Mixed-RKDG finite element method for the drift-diffusion semiconductor device equations. VLSI Design, 3:145–158, 1995.

    Article  Google Scholar 

  11. P. Ciarlet. The finite element method for elliptic problems. North Holland, 1975.

    Google Scholar 

  12. B. Cockburn and P.-A. Gremaud. A priori error estimates for numerical methods for scalar conservation laws. part i: The general approach. Math. Comp., 65:533–573, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Cockburn, S. Hou and C.W. Shu. Tvb Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws iv: The multidimensional case. Math. Comp., 54:545–581, 1990.

    MathSciNet  MATH  Google Scholar 

  14. B. Cockburn, S.Y. Lin and C.W. Shu. Tvb Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws iii: One dimensional systems. J. Comput. Phys, 84:90–113, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Cockburn and C.W. Shu. Tvb Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws ii: General framework. Math. Comp., 52:411–435, 1989.

    MathSciNet  MATH  Google Scholar 

  16. B. Cockburn and C.W. Shu. The p1-Rkdg method for two-dimensional Euler equations of gas dynamics. ICASE Report No. 91-32, 1991.

    Google Scholar 

  17. B. Cockburn and C.W. Shu. The Runge-Kutta local projection p 1-discontinuous Galerkin method for scalar conservation laws. M 2 AN, 25:337–361, 1991.

    MathSciNet  MATH  Google Scholar 

  18. B. Cockburn and C.W. Shu. The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J. Numer. Anal., to appear.

    Google Scholar 

  19. B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin finite element method for conservation laws v: Multidimensional systems. J. Comput. Phys., to appear.

    Google Scholar 

  20. H.L. deCougny, K.D. Devine, J.E. Flaherty, R.M. Loy, C. Ozturan and M.S. Shephard. High-order accurate discontinuous finite element solution of the 2d Euler equations. Applied Numerical Mathematics, 16:157–182, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. K.D. Devine, J.E. Flaherty, R.M. Loy, and S.R. Wheat. Parallel partitioning strategies for the adaptive solution of conservation laws. Rensselaer Polytechnic Institute Report No. 94-1, 1994.

    Google Scholar 

  22. K.D. Devine, J.E. Flaherty, S.R. Wheat, and A.B. Maccabe. A massively parallel adaptive finite element method with dynamic load balancing. SAND 93-0936C, 1993.

    Google Scholar 

  23. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems i: A linear model problem. SIAM J. Numer. Anal., 28:43–77, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems ii: Optimal error estimates in l l 2 and l l . SIAM J. Numer. Anal., 32:706–740, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems iv: A nonlinear model problem. SIAM J. Numer. Anal., 32:1729–1749, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Eriksson and C. Johnson. Adaptive finite element methods for parabolic problems v: Long time integration. SIAM J. Numer. Anal., 32:1750–1762, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Eriksson, C. Johnson and V. Thomée. Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO, Anal. Numér., 19:611–643, 1985.

    MathSciNet  MATH  Google Scholar 

  28. J. Goodman and R. Le Veque. On the accuracy of stable schemes for 2d scalar conservation laws. Math. Comp., 45:15–21, 1985.

    MathSciNet  Google Scholar 

  29. T. Hughes and A. Brook. Streamline upwind-Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations. Comp. Meth. in App. Mech. and Eng., 32:199–259, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Hughes, L.P. Franca, M. Mallet and A. Misukami. A new finite element formulation for computational fluid dynamics, i. Comp. Meth. in App. Mech. and Eng., 54:223–234, 1986.

    Article  MATH  Google Scholar 

  31. T. Hughes, L.P. Franca, M. Mallet and A. Misukami. A new finite element formulation for computational fluid dynamics, ii. Comp. Meth. in App. Mech. and Eng., 54:341–355, 1986.

    Article  MathSciNet  Google Scholar 

  32. T. Hughes, L.P. Franca, M. Mallet and A. Misukami. A new finite element formulation for computational fluid dynamics, iii. Comp. Meth. in App. Mech. and Eng., 58:305–328, 1986.

    Article  Google Scholar 

  33. T. Hughes, L.P. Franca, M. Mallet and A. Misukami. A new finite element formulation for computational fluid dynamics, iv. Comp. Meth. in App. Mech. and Eng., 58:329–336, 1986.

    Article  Google Scholar 

  34. T. Hughes and M. Mallet. A high-precision finite element method for shocktube calculations. Finite Element in Fluids, 6:339, 1985.

    Google Scholar 

  35. P. Jamet. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal., 15:912–928, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Jiang and C.-W. Shu. On cell entropy inequality for discontinuous Galerkin methods. Math. Comp., 62:531–538, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Johnson and J. Pitkaranta An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 46:1–26, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Johnson and J. Saranen. Streamline diffusion methods for problems in fluid mechanics. Math. Comp., 47:1–18, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Johnson and A. Szepessy. On the convergence of a finite element method for a non-linear hyperbolic conservation law. Math. Comp., 49:427–444, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Johnson, A. Szepessy and P. Hansbo. On the convergence of shock capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comp., 54:107–129, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. LeSaint and P.A. Raviart. On a finite element method for solving the neutron transport equation. Mathematical aspects of finite elements in partial differential equations (C. de Boor, Ed.), Academic Press, pages 89–145, 1974.

    Google Scholar 

  42. W. B. Lindquist. Construction of solutions for two-dimensional riemann problems. Comp. & Maths. with Appls., 12:615–630, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  43. W. B. Lindquist. The scalar Riemann problem in two spatial dimensions: piecewise smoothness of solutions and its breakdown. SIAM J. Numer. Anal., 17:1178–1197, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  44. I. Lomtev and G.E. Karniadakis. A discontinuous spectral/hp element Galerkin method for the Navier-Stokes equations on unstructured grids. Proc. IMACS WC'97, Berlin, Germany, 1997.

    Google Scholar 

  45. I. Lomtev and G.E. Karniadakis Simulations of viscous supersonic flows on unstructured h-p meshes. AIAA 97-0754, 35th Aerospace Sciences Meeting, Reno, 1997.

    Google Scholar 

  46. I. Lomtev and G.E. Karniadakis A Discontinuous Galerkin Method for the Navier-Stokes equations. Int. J. Num. Meth. Fluids, submitted.

    Google Scholar 

  47. I. Lomtev, C.B. Quillen and G.E. Karniadakis. Spectral/hp methods for viscous compressible flows on unstructured 2D meshes. J. Comp. Phys., in press.

    Google Scholar 

  48. D. Newmann. A Computational Study of Fluid/Structure Interactions: Flow-Induced Vibrations of a Flexible Cable Ph.D., Princeton, 1996.

    Google Scholar 

  49. E.O. Macagno and T. Hung. Computational and experimental study of a captive annular eddy. J.F.M., 28:43, 1967.

    Article  Google Scholar 

  50. X. Makridakis and I. Babusŝka. Cn the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal., 34:389–401, 1997.

    Article  MathSciNet  Google Scholar 

  51. S. Osher. Riemann solvers, the entropy condition and difference approximations. SIAM J. Numer. Anal., 21:217–235, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  52. C. Ozturan, H.L. deCougny, M.S. Shephard and J.E. Flaherty. Parallel adaptive mesh refinement and redistribution on distributed memory computers. Comput. Methods in Appl. Mech. and Engrg., 119:123–137, 1994.

    Article  MATH  Google Scholar 

  53. T. Peterson. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal., 28:133–140, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  54. W.H. Reed and T.R. Hill. Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, 1973.

    Google Scholar 

  55. G.R. Richter. An optimal-order error estimate for the discontinuous Galerkin method. Math. Comp., 50:75–88, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  56. S.J. Sherwin and G. Karniadakis Tetrahedral hp finite elements: Algorithms and flow simulations. J. Comput. Phys, 124:314–45, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  57. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys, 77:439–471, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  58. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing schemes, ii. J. Comput. Phys, 83:32–78, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  59. C.W. Shu. TVB uniformly high order schemes for conservation laws. Math. Comp., 49:105–121, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  60. C.W. Shu. TVD time discretizations. SIAM J.Sci. Stat. Comput., 9:1073–1084, 1988.

    Article  MATH  Google Scholar 

  61. J.R. Trujillo. Effective High-Order Vorticity-Velocity Formulation. Ph.D., Princeton, 1997.

    Google Scholar 

  62. B. van Leer. Towards the ultimate conservation difference scheme, ii. J. Comput. Phys, 14:361–376, 1974.

    Article  MATH  Google Scholar 

  63. B. van Leer. Towards the ultimate conservation difference scheme, v. J. Comput. Phys, 32:1–136, 1979.

    Article  Google Scholar 

  64. D. Wagner. The Riemann problem in two space dimensions for a single conservation law. SIAM J. Math. Anal., 14:534–559, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  65. T.C. Warburton, I. Lomtev, R.M. Kirby and G.E. Karniadakis. A discontinuous Galerkin method for the Navier-Stokes equations on hybrid grids. Center for Fluid Mechanics #97-14, Division of Applied Mathematics, Brown University, 1997.

    Google Scholar 

  66. P. Woodward and P. Colella The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys, 54:115–173, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  67. T. Zhang and G.Q., Chen. Some fundamental concepts about systems of two spatial dimensional conservation laws. Acta Math. Sci. (English Ed.), 6:463–474, 1986.

    MathSciNet  MATH  Google Scholar 

  68. T. Zhang and Y.X. Zheng. Two dimensional Riemann problems for a single conservation law. Trans. Amer. Math. Soc., 312:589–619, 1989.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alfio Quarteroni

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Cockburn, B. (1998). An introduction to the Discontinuous Galerkin method for convection-dominated problems. In: Quarteroni, A. (eds) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol 1697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0096353

Download citation

  • DOI: https://doi.org/10.1007/BFb0096353

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64977-9

  • Online ISBN: 978-3-540-49804-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics