Advertisement

Analytic discs and the extendibility of CR functions

  • Alexander Tumanov
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1684)

Keywords

Finite Type Real Hypersurface Nonempty Interior Levi Form Analytic Disc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AH] Ayrapetian, R. A. and Henkin, G. M., Analytic continuation of CR functions through the “edge of the wedge”, Dokl. Akad. Nauk SSSR 259 (1981), 777–781.MathSciNetGoogle Scholar
  2. [BR] Baouendi, M. S. and Rothschild, L., Cauchy-Riemann functions on manifolds of higher codimension in complex space, Invent. Math. 101 (1990), 45–56.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BRT] Baouendi, M. S., Rothschild, L. and Trépreau, J.-M., On the geometry of analytic discs attached to real manifolds, J. Diff. Geom. 39 (1994), 379–405.MathSciNetzbMATHGoogle Scholar
  4. [BT] Baouendi, M. S. and Treves, F., A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. 114 (1981), 387–421.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Bi] Bishop, E., Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1–21.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Bo] Boggess, A., CR manifolds and the tangential Cauchy-Riemann complex, CRC Press, 1991.Google Scholar
  7. [Tr] Trépreau, J.-M., Sur le prolongement holomorphe des fonctions Cr définies sur une hypersurface relle de classe C 2 dans ℂ n, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 3), 61–63.zbMATHGoogle Scholar
  8. [T1] Tumanov, A. E., Extending CR functions on a manifolds of finite type over a wedge, Mat. Sbornik 136 (1988), 129–140.Google Scholar
  9. [T2]-, On the propagation of extendibility of CR functions, In: V. Ancona et al.: Complex analysis and geometry. (Lect. Notes Pure Appl. Math. vol. 173) Basel, New York: Marcel-Dekker, 1995.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Alexander Tumanov
    • 1
  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations