Radon transforms and wave equations

  • Sigurdur Helgason
Part of the Lecture Notes in Mathematics book series (LNM, volume 1684)


Wave Equation Symmetric Space Homogeneous Space Inversion Formula Cartan Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BO] U. Bunke and M. Olbrich, The wave kernel for the Laplacian on classical locally symmetric spaces of rank one, theta functions, trace formulas and the Selberg zeta function, Ann Glob. Anal. Geom. 12 (1994), 357–405.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BT] C. Berenstein and C. Casadio Tarabusi, Range of the k-dimensional Randon transform in real hyperbolic spaces, Forum Math. 5 (1993), 603–616.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [CH] R. Courant and Hilbert, Methoden der Mathematischen Physik, vol. II (Springer, eds.), Berlin, 1973.zbMATHGoogle Scholar
  4. [Co] E. Cotton, Sur les invariant differentiels ..., Ann. Éc. Norm. Sup. 17 (1900), 211–244.MathSciNetzbMATHGoogle Scholar
  5. [CV] O.A. Chalykh and A.P. Veselov, Integrability and Huygens’ principle on symmetric spaces, Preprint (1995).Google Scholar
  6. [EHO] M. Eguchi, M. Hashizume and K. Okamoto, The Paley-Wiener theorem for distributions on symmetric spaces, Hiroshima Math J. 3 (1973), 109–120.MathSciNetzbMATHGoogle Scholar
  7. [GG] I.M. Gelfand and M.I. Graev, The geometry of homogeneous spaces, group representations in homogeneous spaces and questions in integral geometry related to them, Amer. Math. Soc. Transl. 37 (1964).Google Scholar
  8. [Gi] S.G. Gindikin, Integral geometry on quadrics, Amer. Math. Soc. Transl. (2) 169 (1995), 23–31.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [GK] S.G. Gindikin and F.I. Karpelevic, Plancherel measure of Riemannian symmetric spaces of non-positive curvature, Dokl. Akad. Nauk USSR 145 (1962), 252–255.MathSciNetGoogle Scholar
  10. [Go] F. Gonzalez, Radon transforms on Grassmann manifolds, J. Funct. Anal. 71 (1987), 339–362.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [GQ] F. Gonzalez and E.T. Quinto, Support theorems for Randon transforms on higher rank symetric spaces, Proc. Amer. Math. Soc. 122 (1994), 1045–1052.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [HC] Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. Math. 80 (1958), 241–310.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [H1] S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239–299.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [H2]-, A duality in integral geometry; some generalizations of the Radon transform, Bull. Amer. Math. Soc. 70 (1964), 435–446.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [H3]-, Fundamental solutions of invariant differential operators on symmetric spaces Amer. J. Math. 86 (1964), 565–601.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [H4]-, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [H5]-, A duality for symmetric spaces with applications to group representations, Advan. Math. 5 (1970), 1–154.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [H6]-, The surjectivity of invariant differential operators on symmetric spaces, Ann. of Math. 98 (1973), 451–480.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [H7]-, Support of Radon transforms, Advan. Math. 38 (1980), 91–100.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [H8]-, The Radon Transform, Birkhäuser, Boston, 1980.CrossRefzbMATHGoogle Scholar
  21. [H9]-, Groups and Geometric Analysis; Integral Geometry, Invariant Differential Operators and Spherical Functions, Academic Press, New York, 1984.zbMATHGoogle Scholar
  22. [H10]-, The totally geodesic transform on constant curvature spaces, Amer. Math. Soc. 113 (1990), 141–149.MathSciNetzbMATHGoogle Scholar
  23. [H11] S. Helgason, Geometric Analysis on Symmetric Spaces, Amer. Math. Soc. (1994), Math. Surveys and Monographs.Google Scholar
  24. [H12] S. Helgason, Integral geometry and multitemporal wave equations, Comm. Pure Appl. Math ((to appear)).Google Scholar
  25. [HS] S. Helgason and H. Schlichtkrull, The Paley-Wiener space for the multitem-poral wave equation, Comm. Pure Appl. Math. ((to appear)).Google Scholar
  26. [I] S. Ishikawa. The range characterizations of the totally geodesic Radon transform on the real hyperbolic space, Preprint, Univ. of Tokyo, 1995.Google Scholar
  27. [IM] A. Intissar et M. Val Ould Moustapha, Solution explicite de l’équation des ondes dans l’espace symétrique de type non compact de rang 1, C.R. Acad. Sci. Paris 321 (1995), 77–80.Google Scholar
  28. [K] A. Kurusa, Support theorems for the totally geodesic Radon transform on constant curvature spaces, Proc. Amer. Math. Soc., 122 (1994), 429–435.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [L] D. Ludwig, The Radon transform on Euclidean space, Comm. Pure. Appl. Math. 23 (1966), 49–81.MathSciNetzbMATHGoogle Scholar
  30. [LP1] P. Lax and R.S. Phillips, Scattering Theory, Academic Press, New York, 1967.zbMATHGoogle Scholar
  31. [LP2]-, Translation representations for the solution of the non-Euclidean wave equation, Comm. Pure. Appl. Math. 32 (1979), 617–667.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [O] B. Ørsted, The conformal invariance of Huygens’ principle, J. Differential Geom. 16 (1981), 1–9.MathSciNetzbMATHGoogle Scholar
  33. [Or] J. Orloff, Orbital integrals on symmetric spaces, in ‘Noncommutative Harmonic Analysis and Lie Groups’, Lecture Notes in Math. 1243 (1987), 198–239.MathSciNetCrossRefGoogle Scholar
  34. [P] E. Pedon, Équations des ondes sur les espaces hyperboliques, Preprint, Univ. de Nancy (1992–93).Google Scholar
  35. [PS] R.S. Phillips and M. Shahshahani, Scattering theory for symmetric spaces of the noncompact type, Duke Math. J. 72 (1993), 1–29.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [S] M. Shahshahani, Invariant hyperbolic systems on symmetric spaces, Differential Geometry (R. Brooks et al., eds.), Birkhäuser, boston, 1983, pp. 203–233.Google Scholar
  37. [So] D.C. Solomon, Asymptotic formulas for the dual Radon transform, Math. Zeitschr. 195 (1987), 321–343.MathSciNetCrossRefGoogle Scholar
  38. [SS] R. Schimming and H. Schlichtkrull, Helmholtz operators on harmonic manifolds, Acta Math. 173 (1994), 235–258.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [STS] M.A. Semenov-Tian-Shanski, Harmonic analysis on Riemannian symmetric spaces of negative curvature and scattering theory, Math. USSR Izvestija 10 (1976), 535–563.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Sigurdur Helgason

There are no affiliations available

Personalised recommendations