Holomorphic mappings between real analytic submanifolds in complex space

  • Peter Ebenfelt
Part of the Lecture Notes in Mathematics book series (LNM, volume 1684)


Finite Type Real Hypersurface Proper Holomorphic Mapping Real Analytic Hypersurface Generic Submanifolds 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BER1] M. S. Baouendi, P. Ebenfelt and L. P. Rothschild, Algebraicity of holomorphic mappings between real algebraic sets inN, Acta Math., (to appear).Google Scholar
  2. [BER2] M. S. Baouendi, Infinitesimal CR automorphisms of real analytic manifolds in complex space, Comm. Anal. Geom., (to appear).Google Scholar
  3. [BER3] M. S. Baouendi, Parametrization of local biholomorphisms of real analytic hypersurfaces, (submitted for publication) (1996).Google Scholar
  4. [BHR] M. S. Baouendi, X. Huang and L. P. Rothschild, Regularity of CR mappings between algebraic hypersurfaces, to appear, Invent. Math. (1996).Google Scholar
  5. [BJT] M. S. Baouendi, H. Jacobowitz and F. treves, On the analyticity of CR mappings, Ann. Math. 122 (1985), 365–400.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BR1] M. S. Baouendi and Linda Preiss Rothschild, Germs of CR maps between real analytic hypersurfaces, Invent. Math. 93 (1988), 481–500.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BR2]-, Geometric properties of mappings between hypersurfaces in complex space, J. Diff. Geom. 31 (1990), 473–499.MathSciNetzbMATHGoogle Scholar
  8. [BR3]-, Mappings of real algebraic hypersurfaces, J. Amer. Math. Soc. 8 (1995), 997–1015.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [BR4]-, Holomorphic mappings between algebraic hypersurfaces in complex space, Séminaire “Equations aux derivées partielles” 1994–1995, Ecole Polytechnique, Palaiseau, France, 1994.Google Scholar
  10. [BG] T. Bloom and I. Graham, On type conditions for generic real submanifolds ofn, Invent. Math. 40 (1977), 217–243.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [BM] S. Bochner and W. T. Martin, Several complex variables, Princeton University Press, Princeton, NJ, 1948.zbMATHGoogle Scholar
  12. [B] A. Boggess, CR manifolds and the tangential CR complex, CRC Press, Inc., Boca Roaton, Fla., 1991.zbMATHGoogle Scholar
  13. [CM] S.-S. Chern and J.K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [CJ] S.-S. Chern and S. Ji, Projective geometry and Riemann’s mapping problem, Math. Ann. 302 (1995), 581–600.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [D] P. J. Davis, The Schwarz function and Its applications, The Carus Mathematical Monographs 17, Math. Assoc. Amer., 1974.Google Scholar
  16. [DF] K. Diederich and J. E. Fornaess, Proper holomorphic mappings between real-analyric pseudoconvex domains inn, Math. Ann. 282 (1988), 681–700.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [DW] K. Diederich and S. Webster, A reflection principle for degenerate hypersurfaces, Duke Math. J. 47 (1980), 835–843.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [F] F. Forstnerič, Extending proper holomorphic mappings of positive codimension, Invent. Math. 95 (1989), 31–62.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [H1] X. Huang, On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions, Ann. Inst. Fourier, Grenoble 44 (1994), 433–463.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [H2] X. Huang, Schwarz reflection principle in complex spaces of dimension 2, Comm. Part. Diff. Eq. (to appear).Google Scholar
  21. [L] H. Lewy, On the boundary behavior of holomorphic mappings, Acad. Naz. Linzei 35 (1977), 1–8.Google Scholar
  22. [N] T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398–404.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [P] H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo, II. Ser. 23 (1907), 185–220.CrossRefzbMATHGoogle Scholar
  24. [Seg] B. Segre, Intorno al problem di Pincaré della rappresentazione pseudo-conform, Rend. Acc. Lincei 13 (1931), 676–683.zbMATHGoogle Scholar
  25. [Ser] J.-P. Serre, Géometrie algébrique et géometrie analytique, Ann. Inst. Fourier Grenoble 6 (1955), 1–42.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [Sh] H. S. Shapiro, The Schwarz function and Its Generalization to Higher Dimensions, John Wiley & Sons, New York, NY, 1992.zbMATHGoogle Scholar
  27. [ST1] N. Stanton, Infinitesimal CR automorphisms of rigid hypersurfaces, Amer. Math. J 117 (1995), 141–167.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [St2]-, Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math. 118 (1996), 209–233.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [SS] R. Sharipov and A. Sukhov, On CR-mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functions, Trans. Amer. Math. Soc. 348 (1996), 767–780.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Ta] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14 (1962), 397–429.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [Tu1] A. E. Tumanov, Extending CR functions on manifolds of finite type to a wedge, Mat. Sbornik 136 (1988), 128–139.Google Scholar
  32. [Tu2] A. E. Tumanov, Finite-dimensionality of the group of CR automorphisms of a standard CR manifold, and proper holomorphic mappings of Siegel domains, Izvestia Akad. Nauk SSSR, Ser. Mat. 52 (1988); Math. USSR Izvestia 32 (1989), 655–662.Google Scholar
  33. [TH] A. E. Tumanov and G. M. Henkin, Local characterization of holomorphic automorphisms of Siegel domains, Funktsional. Anal. i Prilozhen 17, 49–61; English transl. in Functional Anal. Appl. 17 (1983).MathSciNetGoogle Scholar
  34. [W1] S. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53–68.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [W2]-, On mapping an n-ball into an (n+1)-ball in complex space, Pac. J. Math. 81 (1979), 267–272.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [W3] S. Webster, Geometric and dynamical aspects of real submanifolds of complex space, to appear in Proceedings of Int. Cong. Math., Zurich (1994).Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Peter Ebenfelt
    • 1
  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations