Randon transforms, wavelets, and applications

  • Carlos Berenstein
Part of the Lecture Notes in Mathematics book series (LNM, volume 1684)


Discrete Wavelet Transform Electrical Impedance Tomography Continuous Wavelet Transform Inversion Formula Impedance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AA] S. Andrieux and A. Ben Alda, Identification de fissures planes par une donnée de bord unique, C.R. Acad. Sci. Paris 315I(1992), 1323–1328.zbMATHGoogle Scholar
  2. [AU] A. Aldroubi and M. Unser, editors, “Wavelets in Medicine and Biology,” CRC Press, 1966, 616 pages.Google Scholar
  3. [BB1] D. C. Barber and B. H. Brown, Recent developments in applied potential, in “Information processing in Medical Imaging,” S. Bacharach (ed.), Martinus Nijhoff, 1986, 106–121.Google Scholar
  4. [BB2] D. C. Barber and B. H. Brown, Progress in Electrical Impendance Tomography, in “Inverse problems in partial differential equations,” D. Colton et al. (eds.), SIAM, 1990, 151–164.Google Scholar
  5. [BC1] C. A. Berenstein and E. Casadio Tarabusi, Inversion formulas for the k-dimensional Radon transform in real hyperbolic spaces, Duke Math. J. 62 (1991), 613–632.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BC2] C. A. Berenstein and E. Casadio Tarabusi, Range of the k-dimensional Radon transform in real hyperbolic spaces, Forum Math. 5 (1993), 603–616.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BC3] C. A. Berenstein and E. Casadio Tarabusi, The inverse conductivity problem and the hyperbolic x-ray transform, in “75 years of Radon transform” S. Gindikin and P. Michor, editors, International Press, 1994, 39–44.Google Scholar
  8. [BC4] C. A. Berenstein and E. Casadio Tarabusi, Integral geometry in hyperbolic spaces and electrical impedance tomography, SIAM J. Appl. Math. 56 (1996), 755–764.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [BCW] C. A. Berenstein, D. C. Chang and E. Wang, A nondestructive inspection method to detect a through crack by electrostatic boundary measurements, ISR-TR 96-1.Google Scholar
  10. [BW1] C. A. Berenstein and D. Walnut, Local inversion of the Radon, transform in even dimensions using wavelets, in “75 years of Radon transform,” S. Gindikin and P. Michor, editors, International Press, 1994, 45–69.Google Scholar
  11. [BW2] C. A. Berenstein and D. Walnut, Wavelets and local tomography, in “Wavelets in Medicine and Biology,” A. Aldroubi and M. Unser, editors, CRC Press, 1966.Google Scholar
  12. [BQ] J. Boman and E. Quinto, Support theorems for real analytic Radon transforms, Duke Math. J. 55 (1987), 943–948.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [BV] K. M. Bryant and M. Vogelius, A computational algorithm to detect crack locations from electrostatic boundary measurements, Int. J. Eng. Sci. 32 (1994), 579–603.CrossRefzbMATHGoogle Scholar
  14. [By] G. Beylkin, The inversion problem and applications of the generalized Radon transform, Comm. Pure Appl. Math. 37 (1984), 579–599.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [BCR] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math. 44 (1991), 141–183.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [C] B. Cipra, Shocking images from RPI, SIAM News, July 1994, 14–15.Google Scholar
  17. [D] I. Daubechies, “Ten lectures on wavelets,” SIAM, 1992.Google Scholar
  18. [DB] A. H. Delaney and Y. Bresler, Multiresolution tomographic reconstruction using wavelets, ICIP-94, 830–834.Google Scholar
  19. [DO] J. DeStefano and T. Olson, Wavelet localization of the Radon transform, IEEE Trans. Signal Proc. 42 (1994), 2055–2057.CrossRefGoogle Scholar
  20. [DS] D. C. Dobson and F. Santosa, An image enhancement technique for electrical impedance tomography, Inverse Problems 10 (1994), 317–334.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [FRK] A. Faridani, E. Ritman and K. T. Smith, Local tomography, SIAM J. Applied Math. 52 (1992), 1193–1198.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [FLBW] F. Rashid-Farrokhi, K. J. R. Liu, C. A. Berenstein and D. Walnut, Wavelet-based multiresolution local tomography, ISR-TR 95-73, see also ICIP-95, Washington, DC.Google Scholar
  23. [FLB] F. Rashid-Farrokhi, K. J. R. Liu and C. A. Berenstein, Local tomography in fan-beam geometry using wavelets, ICIP-96, Laussane.Google Scholar
  24. [FMP] B. Fridman, D. Ma, and V. G. Papanicolau, Solution of the linearized inverse conductivity problem in the half space, preprint Wichita St. U., 1995.Google Scholar
  25. [FMLKMLPP] B. Fridman, D. Ma, S. Lissianoi, P. Kuchment, M. Mogilevsky, K. Lancaster, V. Papanicolaou, and I. Ponomaryov, Numeric implementation of harmonic analysis on the hyperbolic disk, in preparation.Google Scholar
  26. [FV] A. Friedman and M. Vogelius, Determining cracks by boundary measurements, Indiana U. Math. J. 38 (1989), 527–556.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [GG] I.M. Gelfand and S. Gindikin, editors, “Mathematical problems of tomography,” AMS, 1990.Google Scholar
  28. [GM] S. Gindikin and P. Michor, editors, “75 years of Randon transform,” International Press, 1994.Google Scholar
  29. [GIN] D. Gisser, D. Isaacson, and J. Newell, Current topics in impedance imaging, Clin. Phys. Physiol. 8 (1987), 216–241.Google Scholar
  30. [GS] V. Guillemin and S. Sternberg, “Geometric asymptotics,” AMS, 1977.Google Scholar
  31. [He1] S. Helgason, “The Radon transform,” Birkhäuser, 1980.Google Scholar
  32. [He2] S. Helgason, “Groups and geometric analysis,” Academic Press, 1984.Google Scholar
  33. [He3] S. Helgason, “Geometric analysis on symmetric spaces,” AMS, 1994.Google Scholar
  34. [Ho] M. Holschneider, Inverse Radon transform through inverse wavelet transforms, Inverse Problems 7 (1991), 853–861.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [J] F. John, “Plane waves and spherical means,” Springer-Verlag, reprinted from originial edition Interscience, 1955.Google Scholar
  36. [Ka] G. Kaiser, A. friendly guide to wavelets, Birkhäuser, 1994.Google Scholar
  37. [KS] A. C. Kak and M. Slaney, “Principles of computerized tomographic imaging,” IEEE Press, 1988.Google Scholar
  38. [KaS] P. G. Karp and F. Santosa, Non-destructive evaluation of corrosion damage using electrostatic measurements, preprint 1995.Google Scholar
  39. [KR] A. I. Katsevich and A. G. Ramm, New methods for finding values of jump of a function from its local tomography data, Inverse Probl. 11 (1995), 1005–1023.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [Ke] F. Keinert, Inversion of k-plane transforms and applications in computer tomography, SIAM Riview 31 (1989), 273–289.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [KLM] P. Kuchment, K. Lancaster and L. Mogilevskaya, On local tomography, Inverse Problems 11 (1995), 571–589.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [KSh] P. Kuchment and I. Shneiberg, Some inversion formulas for SPECT, Applicable Analysis 53 (1994), 221–231.MathSciNetzbMATHGoogle Scholar
  43. [Ku1] A. Kurusa, The Radon transform on hyperbolic space, Geometriae Dedicata 40 (1991), 325–336.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [Ku2] A. Kurusa, Support theorems for the totally geodesic Radon transform on constant curvature spaces, Proc. Amer. Math. Soc. 122 (1994), 429–435.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [M] Y. Meyer, “Ondelettes et opérateurs,” 3 vols., Herman, 1990.Google Scholar
  46. [MS] J. M. Morel and S. Solimini, “Variational methods in image segmentation,” Birkhäuser, 1995.Google Scholar
  47. [N1] A. I. Nachman, Reconstruction from boundary measurements, Annals Math. 128 (1988), 531–576.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [N2] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Annals Math. 143 (1996), 71–96.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [Na] F. Natterer, “The mathematics of computerized tomography,” Wiley, 1986.Google Scholar
  50. [O] T. Olson, Optimal time-frequency projections for localized tomography, Annals of Biomedical Engineering 23 (1995), 622–636.CrossRefGoogle Scholar
  51. [Q1] E. T. Quinto, Tomographic reconstruction from incomplete data-numerical inversion of the exterior Radon transform, Inverse Problems 4 (1988), 867–876.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [Q2] E. T. Quinto, Singularities of the X-ray transform and limited data tomography in R 2 and R 3, SIAM J. Math. Anal. 24 (1993), 1215–1225.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [Q3] E. T. Quinto, Computed tomography and rockets, Springer Lecture Notes in Math. 1497 (1991), 261–268.Google Scholar
  54. [QCK] E. T. Quinto, M. Cheney, and P. Kuchment, eds., “Tomography, impedance imaging, and integral geometry,” Lect. Appl. Math. 30, Amer. Math. Soc., 1994.Google Scholar
  55. [R] B. Rubin, Inversion and characterization of Radon transforms via continuous wavelet transforms, Hebrew Univ. TR 13, 1995/96.Google Scholar
  56. [RS] A. Ramm and A. I. Zaslavsky, Singularities of the Rdaon transform, Bull. Amer. Math. Soc. 25 (1993), 109–115.MathSciNetCrossRefzbMATHGoogle Scholar
  57. [S] F. Santosa, Inverse problem holds key to safe, continuous imaging, SIAM News, July 1994, 1 and 16–18.Google Scholar
  58. [ST] H. Schonberg and J. Timmer, The gridding method for image reconstruction by Fourier transformation, IEEE Trans. Medical Imaging 14 (1995), 596–607.CrossRefGoogle Scholar
  59. [SCII] E. Sommersalo, M. Cheney, D. Isaacson, and I. Isaacson, Layer stripping: a direct numerical method for impedance imaging, Inverse Probl. 7 (1991), 899–926.MathSciNetCrossRefzbMATHGoogle Scholar
  60. [SU] J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, in “Inverse problems in partial differential equations,” D. Colton et al., eds., SIAM, 1990, 101–139.Google Scholar
  61. [SV] F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math., 50 (1990), 216–243.MathSciNetCrossRefzbMATHGoogle Scholar
  62. [W] D. Walnut, Applications of Gabor and wavelet exampansions to the Radon transform, in “Probabilistic and stochastic methods in analysis,” J. Byrnes et al., ed., Kluwer, 1992, 187–205.Google Scholar
  63. [Wa] E. Wang, Ph.D. thesis, University of Maryland, College Park, 1996.Google Scholar
  64. [ZCMB] Y. Zhang, M. A. Coplan, J. H. Moore and C. A. Berenstein, Computerized tomographic imaging for space plasma physics, J. Appl. Phys. 68 (1990), 5883–5889.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Carlos Berenstein
    • 1
  1. 1.Institute for Systems ResearchUniversity of MarylandCollege Park

Personalised recommendations