Advertisement

Représentations linéaires des groupes finis "algébriques" [d’après Deligne-Lusztig]

  • Jean-Pierre Serre
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 567)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    A. BOREL-Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math., 35 (1976), p. 233–259.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. BOREL et al.-Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math. 131, Springer-Verlag, 1970.Google Scholar
  3. [3]
    P. DELIGNE-Rapport sur la formule des traces, SGA 4 ½, à paraître.Google Scholar
  4. [4]
    P. DELIGNE and G. LUSZTIG-Representations of reductive groups over finite fields, Ann. of Math., 103 (1976), p. 103–161.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    V. ENNOLA-On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn., ser. A, no 313 (1963).Google Scholar
  6. [6]
    W. FEIT-Divisibility of projective modules of finite groups, Journal of Pure and Applied Algebra, 8 (1976), p. 183–185.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    F. G. FROBENIUS-Über Gruppencharaktere, Sitz. König. Pr. Akad. Wiss. Berlin (1896), p. 985–1021 (Ges. Abh., III, p. 1–37).Google Scholar
  8. [8]
    J. A. GREEN-The characters of the finite general linear groups, Trans. A.M.S. 80 (1955), p. 402–447.zbMATHCrossRefGoogle Scholar
  9. [9]
    A. GROTHENDIECK-Formule de Lefschetz et rationalité des fonctions L, Sém. Bourbaki, exposé 279 (1964), Benjamin, New York (reproduit dans "Dix Exposés sur la cohomologie des schémas", North-Holland, 1968).Google Scholar
  10. [10]
    D. KAZHDAN-Proof of Springer’s Hypothesis, à paraître.Google Scholar
  11. [11]
    G. LUSZTIG-Sur la conjecture de Macdonald, C.R. Acad. Sci. Paris, Série A, 280 (1975), p. 317–320.zbMATHMathSciNetGoogle Scholar
  12. [12]
    G. LUSZTIG-Divisibility of projective modules of finite Chevalley groups by the Steinberg module, à paraître.Google Scholar
  13. [13]
    G. ŁUSZTIG-On the Green polynomials of classical groups, Proc. London Math. Soc., à paraître.Google Scholar
  14. [14]
    G. LUSZTIG-On the finiteness of the number of unipotent classes, Invent. Math., à paraître.Google Scholar
  15. [15]
    G. LUSZTIG-Coxeter orbits and eigenspaces of Frobenius, Invent. Math., à paraître.Google Scholar
  16. [16]
    I. G. MACDONALD-Principal parts and the degeneracy rule, non publié.Google Scholar
  17. [17]
    W. SCHMID-L2-cohomology and the discrete series, Ann. of Math., 103 (1976), p. 375–394.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    T. A. SPRINGER-Generalization of Green’s polynomials, Proc. Symp. Pure Math. XXI (1971), A.M.S., p. 149–153.MathSciNetGoogle Scholar
  19. [19]
    T. A. SPRINGER-On the characters of certain finite groups, Lie groups and their representations (ed. by I. M. Gelfand), Budapest (1975), p. 621–644.Google Scholar
  20. [20]
    B. SRINIVASAN-The Steinberg character of a finite simple group of Lie type, J. Austr. Math. Soc., 12 (1971), p. 1–14.zbMATHCrossRefGoogle Scholar
  21. [21]
    B. SRINIVASAN-Isometries in finite groups of Lie type, J. of Algebra, 26 (1973), p. 556–563.zbMATHCrossRefGoogle Scholar
  22. [22]
    R. STEINBERG-Endomorphisms of linear algebraic groups, Memoirs Amer. Math. Soc., 80, 1968.Google Scholar
  23. [23]
    J. TATE-Algebraic cycles and poles of zeta functions, Arith. Alg. Geometry (Proc. Conf. Purdue Univ., 1963), Harper and Row, New York, 1965, p. 93–110.Google Scholar

Copyright information

© N. Bourbaki 1977

Authors and Affiliations

  • Jean-Pierre Serre

There are no affiliations available

Personalised recommendations