Advertisement

Rapport sur la théorie classique des noeuds

  • André Gramain
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 567)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R. BING and J. MARTIN-Cubes with knotted holes, Trans. A.M.S., 155 (1971), 217–231.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. BROWN and R. CROWELL-Deformation retractions of 3-manifolds into their boundaries, Ann. of Math., 82 (1965), 445–458.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. CROWELL and R. FOX-Knot theory, Ginn and Co, Boston Mass., 1963.Google Scholar
  4. [4]
    J. CONWAY and C. GORDON-A group to classify knots Google Scholar
  5. [5]
    M. FORT (Editor)-Topology of 3-manifolds, Prentice-Hall, 1962.Google Scholar
  6. [6]
    A. HAEFLIGER-Sphères nouées, Atti della 2a riunione del Groupement des mathématiciens d’expression latine, Firenze, (1961), 139–144.Google Scholar
  7. [7]
    K. JOHANNSON-Equivalences d’homotopie des variétés de dimension 3, C.R. Acad. Sc. Paris, 281 (1975), 1009–1010.zbMATHMathSciNetGoogle Scholar
  8. [8]
    M. KERVAIRE-Les noeuds de dimension supérieure, Bull. S.M.F., Paris, 93 (1965), 225–271.zbMATHMathSciNetGoogle Scholar
  9. [9]
    F. LAUDENBACH-Topologie de la dimension 3, Astérisque no 12, S.M.F., Paris, 1974.Google Scholar
  10. [10]
    L. NEUWIRTH-Knots groups, Ann. of Math. Studies no 56, Princeton Univ. Press, (1965), $ 4.50.Google Scholar
  11. [11]
    L. NEUWIRTH (Editor)-Knots, groups and 3-manifolds, Papers dedicated to the memory of R. H. Fox, Ann. of Math. Studies no 84, Princeton Univ. Press, (1975), $ 17.50.Google Scholar
  12. [12]
    C. PAPAKYRIAKOPOULOS-On Dehn’s lemma and the asphericity of knots, Ann. of Math., 66 (1957), 1–26.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.-C. PONT-La topologie algébrique des origines à Poincaré, P.U.F., Paris, 1974.zbMATHGoogle Scholar
  14. [14]
    H. SEIFERT-Schlingknoten, Mat. Zeitsch., 52 (1949), 62–80.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    SEIFERT and THRELFALL-Lehrbuch der Topologie, rééd. Chelsea.Google Scholar
  16. [16]
    H. SCHUBERT-Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, Sitzungberichte Heidelberger Akad. Wiss. Math.-Natur Kl., 3 (1949), 57–104.MathSciNetGoogle Scholar
  17. [17]
    H. SCHUBERT-Knoten und Vollringe, Acta Math., 90 (1953), 131–286.zbMATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    J. SIMON-An algebraic classification of knots in S3, Ann. of Math., 97 (1973), 1–13.zbMATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    F. WALDHAUSEN-On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56–88.zbMATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    J. H. C. WHITEHEAD-On doubled knots, J. London Math. Soc., 12 (1937), 63–71.zbMATHGoogle Scholar
  21. [21]
    W. WHITTEN-Isotopy types of knot spanning surfaces, Topology, 12 (1973), 373–380.zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    W. WHITTEN-Algebraic and geometric caracterizations of knots, Inv. Math., 26 (1974), 259–270.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© N. Bourbaki 1977

Authors and Affiliations

  • André Gramain

There are no affiliations available

Personalised recommendations