The work of kolyvagin on the arithmetic of elliptic curves

  • Karl Rubin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1399)


Elliptic Curve Elliptic Curf Galois Group Infinite Order Abelian Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coates. J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39, 223–251 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84, 225–320 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kolyvagin, V.A.: Finiteness of E(Q) and Ш(E, Q) for a class of Weil curves. (Russian) To appear in Izv. Akad. Nauk SSSR Ser. Mat. Google Scholar
  4. 4.
    Kolyvagin, V.A.: On Mordell-Weil and Shafarevich-Tate groups of elliptic Weil curves. (Russian) preprintGoogle Scholar
  5. 5.
    Milne, J.S.: Arithmetic duality theorems. Persp. in Math. 1, Orlando: Academic Press (1986)Google Scholar
  6. 6.
    Rubin, K.: Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math. 89, 527–560 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Serre. J-P.: Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Inv. Math. 15, 259–331 (1972)CrossRefGoogle Scholar
  8. 8.
    Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Pub. Math. Soc. Japan 11, Princeton: Princeton University Press (1971)Google Scholar
  9. 9.
    Silverman, J.: The arithmetic of elliptic curves. Grad. Texts in Math. 106, New York: Springer (1986)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Karl Rubin
    • 1
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations