Some effective estimates for elliptic curves

  • D. W. Masser
  • G. Wüstholz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1399)


Elliptic Curve Complex Multiplication Elliptic Curf Galois Group Abelian Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba]
    M. Bashmakov, The cohomology of abelian varieties over a number field, Russian Math. Surveys 27 (1972), 25–70.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Be]
    D. Bertrand, Kummer theory on the product of an elliptic curve by the multiplicative group, Glasgow Math. J. 22 (1981), 83–88.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [C1]
    J. H. Coates, An effective p-adic analogue of a theorem of Thue III. The diophantine equation y 2 = x 3 + k. Acta Arith. 16 (1970), 425–435.MathSciNetzbMATHGoogle Scholar
  4. [C2]
    J. H. Coates, An application of the division theory of elliptic functions to diophantine approximation, Invent. Math. 11 (1970), 167–182.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [EST]
    P. Erdös, C. L. Stewart and R. Tijdeman, On the number of solutions of the equation x + y = z in S-units, Compositio Math. to appear.Google Scholar
  6. [ES]
    J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Y n = f(X), Math. Proc. Camb. Phil. Soc. 100 (1986), 237–248.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [MW]
    D. W. Masser and G. Wüstholz, Estimating isogenies on elliptic curves, manuscript.Google Scholar
  8. [M]
    D. W. Masser, Counting points of small height on elliptic curves, to appear in Bull. Soc. Math. France.Google Scholar
  9. [R]
    K. Ribet, Kummer theory on extensions of abelian varieties by tori, Duke Math. J. 46 (1979), 745–761.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Se1]
    J.-P. Serre, Abelian l-adic representations and elliptic curves, Benjamin, New York Amsterdam 1968.zbMATHGoogle Scholar
  11. [Se2]
    J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.MathSciNetCrossRefGoogle Scholar
  12. [Si]
    J. H. Silverman, The arithmetic of elliptic curves, Springer, New York Berlin Heidelberg Tokyo 1986.CrossRefzbMATHGoogle Scholar
  13. [V]
    P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Math. Vol. 1239, Springer, Berlin Heidelberg New York London Paris Tokyo ... 1987.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • D. W. Masser
  • G. Wüstholz

There are no affiliations available

Personalised recommendations