The siegel modular variety of degree two and level four: A report

  • Ronnie Lee
  • Steven H. Weintraub
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1399)


Exact Sequence Modular Form Boundary Component Cusp Form Fundamental Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [G]
    van der Geer, G. On the geometry of a Siegel modular threefold. Math. Ann. 260(1982), 317–350.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [HK]
    Heidrich, H. and Knöller, F.W. Uber die Fundamentalgruppen Siegelscher Modulvarietäten vom Grade 2, Manus Math. 57(1987), 249–262.CrossRefzbMATHGoogle Scholar
  3. [HR]
    Hochster, M. and Roberts, J. Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. Math. 13(1974), 115–175.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [I1]
    Igusa, J.-I. On the graded ring of theta-constants. Amer. J. Math. 86(1964), 219–246.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [I2]
    _____ On Siegel modular forms of genus two (II). Amer. J. Math. 86(1964), 392–412.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [I3]
    _____ Theta functions. Springer Verlag, Berlin-Heidelberg-New York (1972).CrossRefzbMATHGoogle Scholar
  7. [LW1]
    Lee, R. and Weintraub, S. H. Cohomology of a Siegel modular variety of degree two, in Group Actions on Manifolds, R. Schultz, ed., Amer. Math. Soc. Providence, RI (1984), 433–488Google Scholar
  8. [LW2]
    __________ Cohomology of Sp4(ℤ) and related groups and spaces. Topology 24(1985), 391–410.MathSciNetCrossRefGoogle Scholar
  9. [LW3]
    __________ On the transformation law for thetaconstants. J. Pure Appl. Alg. 44(1987), 273–285.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [LW4]
    __________ Moduli spaces of Riemann surfaces of genus two with level structures. Trans. Amer. Math. Soc. 310(1988), 217–237.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [LW5]
    __________ On certain Siegel modular varieties of genus two and levels above two, in Algebraic Topology and Transformation Groups, T. tom Dieck, ed., Springer Verlag, Berlin-Heidelberg-New York (1988), 29–52CrossRefGoogle Scholar
  12. [N]
    Namikawa, Y. Toroidal compactification of Siegel spaces. Springer Verlag, Berlin-Heidelberg-New York (1980).CrossRefzbMATHGoogle Scholar
  13. [U]
    Ueno, K. On fibre spaces of normally polarized abelian varieties of dimension two, II. Singular fibres of the first kind. J. Fac. Sci. Univ. Tokyo 19(1972), 163–199.MathSciNetzbMATHGoogle Scholar
  14. [Y]
    Yamazaki, T. On Siegel modular forms of degree two. Amer. J. Math. 98(1970), 39–53.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Ronnie Lee
    • 1
  • Steven H. Weintraub
    • 2
  1. 1.Dept. of MathematicsYale UniversityNew HavenUSA
  2. 2.Dept. of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations