Advertisement

Volumes of fundamental domains of Picard modular groups

  • R.-P. Holzapfel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1399)

Keywords

Algebraic Group Volume Form Fundamental Domain Hermitean Form Strong Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Böge, Schiefhermitesche Formen über Zahlkörper und Quaternionenschiefkörper, Journ. f. d. reine u. angew. Math. 221 (1966), 85–112zbMATHGoogle Scholar
  2. [2]
    A. Borel, Introduction aux groupes arithmétiques, Hermann, Paris 1969zbMATHGoogle Scholar
  3. [3]
    N. Bourbaki, Algebra, vol. 2, Mir, Moscow 1965 (russ.)zbMATHGoogle Scholar
  4. [4]
    H. Braun, Zur theorie der hermitschen Formen, Abh. Sem. d. Univ. Hamburg, 14 (1941), 61–150CrossRefzbMATHGoogle Scholar
  5. [5]
    S. Helgason Differential geometry and symmetric spaces, Academic Press, London/New York 1962zbMATHGoogle Scholar
  6. [6]
    F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, Symp. Intern. Top. Alg., Univ. de Mexico (1958), 129–144Google Scholar
  7. [7]
    F. Hirzebruch, Topological methods in algebraic geometry, Springer (1966)Google Scholar
  8. [8]
    R.-P. Holzapfel, Arithmetische Kugelquotientenfläechen V, Seminarberichte der Humb.-Univ., 21 (1980), 1–48Google Scholar
  9. [9]
    R.-P. Holzapfel, A class of minimal surfaces in the unknown region of surfaces geography, Math. Nachr. 98 (1980), 211–232MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R.-P. Holzapfel, Surface arithmetics, in preparation for Dt. Verl. d. Wiss./Kluwer Ac. Publ.Google Scholar
  11. [11]
    R.-P. Holzapfel, J.-M. Feustel, Symmetry points and Chern invariants of Picard modular surfaces, Math. Nachr. 111 (1983), 7–40MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Jacobowitz, Hermitean forms over local fields, Am. Journ. Math. 84 (1962), 441–465MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. W. S. Kassels, A. Fröhlich, Algebraic number theory, Acad. Press, London/New York 1967Google Scholar
  14. [14]
    F. Kneser, Galois cohomology halbeinfacher algebraischer Gruppen über p-adischen Körpern I, Math. Z. 88 (1965), 40–47MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    F. Kneser, Semisimple algebraic groups in [13] (Chapter X)Google Scholar
  16. [16]
    H.-W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Sem. d. Univ. Hamburg 22 (1958), 131–140MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Neron, Modéles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. math. IHES 24, Paris (1965)zbMATHGoogle Scholar
  18. [18]
    G. Otremba, Zur Theorie der hermiteschen Formen in imaginär quadratischen Zahlkörpern, Journ. f. d. reine und angew. Math. 249 (1971), 1–19MathSciNetzbMATHGoogle Scholar
  19. [19]
    V. P. Platonov, The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups, Izv. Acad. Nauk SSSR, Ser. Mat. 33, No. 6 (1969), 1211–1219MathSciNetGoogle Scholar
  20. [20]
    M. Rapoport, Détermination du nombre Tamagawa des groupes semi-simples et quasi-déplovés sur de corps des nombres, Preprint (1975)Google Scholar
  21. [21]
    I. R. Šafarevič, Foundations of algebraic geometry, Nauka, Moscow 1972 (russ.)Google Scholar
  22. [22]
    J.-P. Serre, Cours d'arithmétique, Presses Univ. de France, Paris 1970zbMATHGoogle Scholar
  23. [23]
    O. W. Švarčmann, On the factor space of an arithmetic discrete group acting on the complex ball, Thesis, MGU, Moscow 1974 (russ.)Google Scholar
  24. [24]
    R. O. Wells, Differential analysis on complex manifolds, Prentice Hall, INC., Englewood Cliffs, N. J. 1973zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • R.-P. Holzapfel

There are no affiliations available

Personalised recommendations