Une demonstration elementaire du theoreme de Torelli pour les intersections de trois quadriques generiques de dimension impaire

  • Olivier Debarre
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1399)


Polarisation Principale Prym Variety Torelli Theorem Dimension Impaire Suite Exacte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACGH]
    E. ARBARELLO, M. CORNALBA, P.A. GRIFFITHS, J. HARRIS.-Geometry of Algebraic Curves, I. Springer Verlag (1985).Google Scholar
  2. [B]
    A. BEAUVILLE.-Variétés de Prym et jacobiennes intermédiaires. Ann. Sc. Ecole Norm. Sup. 10 (1977), 309–391.MathSciNetzbMATHGoogle Scholar
  3. [Be]
    A. BERTRAM.-An existence theorem for Prym special divisors. Invent. Math. 90 (1987), 669–671.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [D 1]
    O. DEBARRE.-Le théorème de Torelli pour les intersections de trois quadriques. Invent. Math. A paraître.Google Scholar
  5. [D 2]
    O. DEBARRE.-Sur le théorème de Torelli pour les variétés de Prym. Am. J. of Math. A paraître.Google Scholar
  6. [D 3]
    O. DEBARRE.-Sur les variétés de Prym des courbes tétragonales. Ann. Sc. Ecole Norm. Sup. 21 (1988), 545–559.MathSciNetzbMATHGoogle Scholar
  7. [Di]
    A. DIXON.-Notes on the reduction of a ternary quartic to a symmetrical determinant. Proc. Camb. Phil. Soc. 11 (1902), 350–351.zbMATHGoogle Scholar
  8. [Do]
    R. DONAGI.-The tetragonal construction. Bull. Amer. Math. Soc. 4 (1981), 181–185.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [FS 1]
    R. FRIEDMAN, R. SMITH.-Degenerations of Prym varieties and intersections of three quadrics. Invent. Math. 85 (1986), 615–635.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [FS 2]
    R. FRIEDMAN, R. SMITH.-The generic Torelli theorem for the Prym map. Invent. Math. 67 (1982), 473–490.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [K]
    V. KANEV.-The global Torelli theorem for Prym varieties at a generic point. Math. USSR Izvestija 20 (1983), 235–258.CrossRefzbMATHGoogle Scholar
  12. [L]
    Y. LASZLO.-Théorème de Torelli pour les intersections complètes de trois quadriques de dimension paire. A paraître.Google Scholar
  13. [M 1]
    D. MUMFORD.-Prym Varieties I. Contributions to Analysis. Acad. Press, New York (1974), 325–350.Google Scholar
  14. [M 2]
    D. MUMFORD.-Theta characteristics of an algebraic curve. Ann. Sc. Ecole Norm. Sup. 4 (1971), 181–192.MathSciNetzbMATHGoogle Scholar
  15. [T]
    A.N. TJURIN.-On the intersection of quadrics. Russian Math. Surveys 30 (1975).Google Scholar
  16. [W 1]
    G. WELTERS.-Recovering the curve data from a general Prym variety. Amer. J. of Math. 109 (1987), 165–182.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [W 2]
    G. WELTERS.-The surface C-C on Jacobi varieties and 2nd order theta functions. Acta math. 157 (1986), 1–22.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Olivier Debarre
    • 1
  1. 1.Mathématique, Université Paris-SudOrsay CedexFrance

Personalised recommendations