On some conditions for convergence of branched continued fractions

  • Wojciech Siemaszko
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)


Numerical Computation Practical Reason Analytic Theory Positive Coefficient Continue Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.I. Bodnar, in “Continued Fractions and Applications”, Kiev, 1976 /in Russian/Google Scholar
  2. [2]
    P.I. Bodnarcuk, W.J. Skorobogat'ko, Branched Continued Fractions and their Applications, Naukowa Dumka, Kiev, 1974 /in Ukrainian/Google Scholar
  3. [3]
    H. von Koch, Bull. Soc. Math. de France, vol. 23 /1895/, 23–40Google Scholar
  4. [4]
    K.J. Kutschminskaja, Dokl. Akad. Nauk USRR, No. 7, ser. A. /1978/, 614–617 /in Ukrainian/Google Scholar
  5. [5]
    J.A. Murphy, M.R. O'Donohoe, J. Comp. Appl. Math., vol. 4 no. 3 /1978/, 181–190MathSciNetCrossRefGoogle Scholar
  6. [6]
    W. Siemaszko, J. Comp. Appl. Math., vol. 6, no. 2 /1980/, 121–125MathSciNetCrossRefGoogle Scholar
  7. [7]
    H.S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948.zbMATHGoogle Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • Wojciech Siemaszko
    • 1
  1. 1.Dept. Math. Phys.I. Łukasiewicz Technical UniversityRzeszówPoland

Personalised recommendations