Advertisement

Formally biorthogonal polynomials

  • H. van Rossum
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AGARWAL, A.K. and H.L. MANOCHA, A note on Konhauser sets of biorthogonal polynomials. Ned. Akad. v. Wetensch., Proc. Ser A 83=Indag. Math. 42, 113–118 (1980).MathSciNetzbMATHGoogle Scholar
  2. 2.
    ARMS, R. J. and A. EDREI, The Padé tables and continued fractions generated by totally positive sequences. In: Mathematical Essays dedicated to A.J. Macintyre, 1–21, Ohio Univ. Press (1970).Google Scholar
  3. 3.
    BRUIN, M.G. de, Some classes of Padé tables whose upper halves are normal. Nieuw Archief v. Wisk. (3) XXV, 148–160 (1977).zbMATHGoogle Scholar
  4. 4.
    CARLITZ, L., A note on certain biorthogonal polynomials. Pacific J. Math. Vol 24, 425 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    CORPUT, J.G. van der, Over eenige determinanten. Proc. Kon. Akad. v. Wetensch., Amsterdam (1), 14, 1–44 (1930) (Dutch).zbMATHGoogle Scholar
  6. 6.
    DAVIS, P. and H. POLAK, Complex biorthogonality for sets of polynomials. Duke Math. J. Vol. 21, 653–666 (1954).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    EDREI, A., Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence. Canad. J. Math. 5, 86–94 (1953).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    KARANDA, B.K. and N.K. THAKARE, Some results for Konhauser biorthogonal polynomials and dual series equations. Indian J. Pure Appl. Math. 7. no 6, 635–646 (1976)MathSciNetzbMATHGoogle Scholar
  9. 9.
    KONHAUSER, J.D.E., Some properties of biorthogonal polynomials. Journ. Math. Anal. Appl. 11, 242–260 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    KONHAUSER, J.D.E., Biorthogonal polynomials suggested by the Laguerre polynomials Pacific. J. Math. Vol. 21, no 2, 303–304 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    PRABHAKAR, T.R., On the other set of the biorthogonal polynomials suggested by the Laguerre polynomials. Pacific J. Math. 37, 801–804 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    PREISER, S., An investigation of biorthogonal polynomials derivable from ordinary differential equations of the third order. J. Math. Anal. Appl. 4, 38–64 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    ROSSUM, H. van, Totally positive polynomials. Ned. Akad. v. Wetensch. Proc. Ser A, 68 no 2 =Indag. Math. 27, no 2, 305–315 (1965).MathSciNetzbMATHGoogle Scholar
  14. 14.
    SCHOENBERG, I.J., Some analytic aspects of the problem of smoothing. In: Studies and Essays presented to R. Courant on his 60th birthday, Jan. 8, Interscience, New York 351–377 (1948)Google Scholar
  15. 15.
    SPENCER, L. and M. FANO, Penetration and diffusion of X-rays. Calculation of spatial distributions by polynomial expansion. Journ. of Research, National Bureau of Standards, 46, 446–461 (1951).CrossRefGoogle Scholar
  16. 16.
    SRIVATAVA, H.M., On the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials. Pacific J. Math. 37, 801–804 (1971).MathSciNetCrossRefGoogle Scholar
  17. 17.
    SRIVASTAVA, H.M., Some bilateral generating functions for a certain class of special functions. I, II. Proc. Kon. Akad. v. Wetensch. Proc. Ser A 83-Indag. Math. 42, 221–246 (1980).MathSciNetzbMATHGoogle Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • H. van Rossum
    • 1
  1. 1.Instituut voor Propedeutische WiskundeUniversiteit van AmsterdamAmsterdamNetherlands

Personalised recommendations