Recurrence coefficients in case of Anderson localisation

  • Alphonse Magnus
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)


Questions related to Stieltjes transforms of jump functions with a dense set of jump points are presented.


Orthogonal Polynomial Continue Fraction Moment Problem Solid State Phys Jump Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N.I. AKHIEZER, The Classical Moment Problem, Oliver & Boyd, Edinburgh 1965.zbMATHGoogle Scholar
  2. [2]
    P.W. ANDERSON, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958) 1492–1505.CrossRefGoogle Scholar
  3. [3]
    B. BALIAN, R. MAYNARD, G. TOULOUSE, editors, Les Houches Summer School Proceedings: Ill-Condensed Matter, North-Holland, N.Y. 1979.Google Scholar
  4. [4]
    T.S. CHIRARA, An Introduction to Orthogonal Polynomials, Gordon & Breach, N.Y. 1978.Google Scholar
  5. [5]
    T.S. CHIRARA, Orthogonal polynomials whose distribution functions have finite point spectra. SIAM J. Math. Anal. 11 (1980) 358–364.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.P. GASPARD, F. CYROT-LACKMANN, Density of states from moments. Application to the impurity band. J. of Physics C: Solid State Phys. 6 (1973) 3077–3096.CrossRefGoogle Scholar
  7. [7]
    R. HAYDOCK, Study of a mobility edge by a new perturbation theory. Phil. Mag. B 37 (1978) 97–109.CrossRefGoogle Scholar
  8. [7']
    R. HAYDOCK, The recursive solution of the Schrödinger equation. Solid State Phys. 35 (1980) 215–294.Google Scholar
  9. [8]
    C.H. HODGES, D. WEAIRE, N. PAPADOPOULOS, The recursion method and Anderson localisation. J. Phys. C 13 (1980) 4311–4321.CrossRefGoogle Scholar
  10. [8']
    C.H. HODGES, Van Hove singularities and continued fraction coefficients. J. Phys. Lett. 38 (1977) L187–L189.CrossRefGoogle Scholar
  11. [9]
    K. ISHII, Localization of eigenstates and transport phenomena in the one-dimensional disordered system. Suppl. Prog. Theor. Phys. 53 (1973) 77–138.CrossRefGoogle Scholar
  12. [10]
    R. JOHNSTON, Localisation and localisation edges—a precise characterisation. Preprint Blackett Laboratory, Imperial College London 1980.Google Scholar
  13. [11]
    T. KATO, Perturbation Theory for Linear Operators, Springer, Berlin 1966.CrossRefzbMATHGoogle Scholar
  14. [12]
    J.C. KIMBALL, Localisation and spectra in solid state systems. J. Phys. C 11 (1978) 4347–4354.CrossRefGoogle Scholar
  15. [12']
    J. KIMBALL, Two special cases of Anderson localisation. J. Phys. C 13 (1980) 5701–5708.CrossRefGoogle Scholar
  16. [13]
    Al. MAGNUS, Recurrence coefficients for orthogonal polynomials on connected and non connected sets, pp. 150–171 in L. WUYTACK, editor: Padé Approximation and its Applications, Lecture Notes Math. 765, Springer, Berlin 1979.CrossRefGoogle Scholar
  17. [14]
    P.G. NEVAI, Orthogonal Polynomials, Memoirs AMS, Providence 1979.Google Scholar
  18. [15]
    R.D. RICHTMYER, Principles of Advanced Mathematical Physics, Springer, N.Y. 1978.CrossRefzbMATHGoogle Scholar
  19. [16]
    J. STEIN, U. KREY, Numerical studies on the Anderson localization problem. Z. Physik B 34 (1979) 287–296; 37 (1980) 13–22.CrossRefGoogle Scholar
  20. [17]
    G. SZEGÖ, Orthogonal Polynomials. AMS Providence 1939.CrossRefzbMATHGoogle Scholar
  21. [18]
    H.S. WALL, Analytic Theory of Continued Fractions, Van Nostrand, Princeton 1948.zbMATHGoogle Scholar
  22. [19]
    D. WEAIRE, B. KRAMER, Numerical methods in the study of the Anderson transition. J. Non-Crystalline Solids 32 (1979) 131–140.CrossRefGoogle Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • Alphonse Magnus
    • 1
  1. 1.Institut Mathématique U.C.L.Louvain-la-NeuveBelgium

Personalised recommendations