Singularities of functions determined by the poles of Padé approximants

  • J. Karlsson
  • E. B. Saff
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)


Interpolation Scheme Monic Polynomial Rational Interpolation Geometric Convergence Diagonal Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.-H. Ching and C. K. Chui, Mean boundary value problems and Riemann series, J. Approx. Theory, 10(1974), 324–336.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Dienes, The Taylor Series, Dover, New York, 1957.zbMATHGoogle Scholar
  3. 3.
    D. S. Gaunt and A. J. Guttman, Asymptotic analysis of coefficients. In: Phase Transitions and Critical Phenomena III, (Domb, Green, eds.) Academic Press, New York, 1974, pp. 181–243.Google Scholar
  4. 4.
    A. O. Gelfond, Differenzenrechnung, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957.zbMATHGoogle Scholar
  5. 5.
    A. A. Gončar and K. N. Lungu, Poljuci diagonalnih approksimatsij Padé i analitičeskoe prodolženie funktsij, Mat. Sb. 111 (153) (1980), 279–292.MathSciNetGoogle Scholar
  6. 6.
    J. Karlsson and E. B. Saff, Singularities of analytic functions determined by Pade' approximants, Notices of Amer. Math. Soc. 26(1979), p. A–584.Google Scholar
  7. 7.
    J. Karlsson and B. von Sydow, The convergence of Padé approximants to series of Stieltjes, Ark. Mat. 14(1976), 43–53.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R. K. Kovačeva, Obobščennie approksimatsii, Padé i meromorfnoe prodolženie funktsij, Mat. Sb. 109 (151)(1979), 365–377.MathSciNetGoogle Scholar
  9. 9.
    R. de Montessus de Ballore, Sur les fractions continues algébriques, Bull. Soc. Math. France 301(1902), 26–32.zbMATHGoogle Scholar
  10. 10.
    E. B. Saff, An extension of Montessus de Ballore's theorem on the convergence of interpolating rational functions, J. Approx. Theory 6(1972), 63–67.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Univ. Toulouse 8(1894), 1–122.MathSciNetCrossRefGoogle Scholar
  12. 12.
    V. V. Vavilov, G. Lopez, and V. A. Prohorov, Ob odnoj obpatnoj zadače dlja strok tablitsi Padé, Mat. Sb. 110 (152)(1979), 117–127.MathSciNetGoogle Scholar
  13. 13.
    H. Wallin, RAtional interpolation to meromorphic functions, these Proceedings.Google Scholar
  14. 14.
    J. L. Walsh, Interpolation and Approximation, by Rational Functions in the Complex Domain, 5th ed, Colloq. Publ. Vol. 20, Amer. Math. Soc., Providence, 1969.Google Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • J. Karlsson
    • 1
  • E. B. Saff
    • 2
  1. 1.Department of MathematicsUniversity of UmeåUmeåSweden
  2. 2.Center for Mathematical ServicesUniversity of South FloridaTampaUSA

Personalised recommendations