Advertisement

Approximants of exponential type general orthogonal polynomials

  • André Draux
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    C. BREZINSKI. “Padé-type approximation and general orthogonal polynomials”. Birkhaüser. (1980). ISNM 50.Google Scholar
  2. [2]
    G. CLAESSENS and L. WUYTACK, “On the computation of non normal padé approximants”. Journal of computational and Applied Mathematics. Vol.: 5 no4 (1979). p. 283–289.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. DRAUX, “Approximants de type exponentiel. Polynômes orthogonaux généraux”. Publication ANO 27. Equipe d'Analyse Numérique et d'Optimisation. Université des Sciences et Techniques de Lille I, UER d'IEEA.Google Scholar
  4. [4]
    F.R. GANTMACHER. “The theory of matrices”, New-York (1959).Google Scholar
  5. [5]
    J. GILEWICZ, “Approximants de Padé”. Lecture Notes in Mathematics 667. Springer-Verlag. Heidelberg (1978).zbMATHGoogle Scholar
  6. [6]
    L. WEISS and R.N. MC. DONOUGH. “Prony's method, Z-transform and Padé approximation”. Science Review. Vol.: 5 no 2 (1963) p. 145–149.MathSciNetGoogle Scholar
  7. [7]
    L. WUYTACK. (Edited by). “Padé approximation and its applications-Proceedings. Antwerp 1979”. Lecture Notes in Mathematics 765, Springer-Verlag, Heidelberg (1979).zbMATHGoogle Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • André Draux
    • 1
  1. 1.UER d'I.E.E.A. Informatique Université des Sciences et Techniques de Lille IVILLENEUVE D'ASCQ CEDEXFrance

Personalised recommendations