Advertisement

Sur une généralisation de l'interpolation rationnelle

  • Florent Cordellier
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)

Keywords

Hermite Interpolation Pade Approximants Sont Respectivement Nous Donnons Rational Interpolation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    BREZINSKI C. Rational approximation to formal power series. Journ. Approx. Theory 25 (1979) 295–317.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    BREZINSKI C. A general extrapolation algorithm. Numer. Math. 35 (1980) 175–187.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    CLAESSENS G. Some aspects of the rational Hermite interpolation table and its applications. Ph. D. Thesis, Univ. of Antwerp, 1976.Google Scholar
  4. [4]
    CORDELLIER F. Démonstration algébrique de l'extension de l'identité de Wynn aux tables de Padé non normales. dans [15], p. 36–60.Google Scholar
  5. [5]
    CORDELLIER F. Quelques aspects de l'interpolation rationnelle généralisée. Pub. ANO 30, Univ. de Lille I, 1980.Google Scholar
  6. [6]
    CUYT A.M. Abstract Padé approximants in operator theory. dans [15], p. 61.87.Google Scholar
  7. [7]
    DAVIS P.J. Interpolation and approximation. Dover Pub. Inc., New York, 1975.zbMATHGoogle Scholar
  8. [8]
    DELLA DORA Contribution à l'approximation de fonctions de la variable complexe au sens Hermite Padé et de hardy. Thèse—Grenoble (1980).Google Scholar
  9. [9]
    GILEWICZ J. Approximants de Padé. Lecture notes in Math. 667, Springer Verlag 1978.Google Scholar
  10. [10]
    KARLIN S. Total positivity, vol. 1. Stanford Univ. Press, Stanford, Cal., 1968.zbMATHGoogle Scholar
  11. [11]
    MUHLBACH G. The general Neville-Aitken-algorithm and some applications. Numer. Math. 31 (1978) 97–110MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    SHAFER R.E. On quadratic approximation. SIAM Journ. N.A. 11 (1974) 447–460.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    WARNER D.D. Hermite interpolation with rational functions. Ph.D. Thesis, Univ., of California, 1974.Google Scholar
  14. [14]
    WUYTACK L. On the osculatory rational interpolation problem. Math. Comp. 29 (1975) 837–843.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    WUYTACK L. Padé approximation and its applications. Lecture Notes in Math. 765, Springer Verlag 1979.Google Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • Florent Cordellier
    • 1
  1. 1.U.E.R. I.E.E.A.-InformatiqueUniversity of LilleVilleneuve d'Ascq CédexFrance

Personalised recommendations