Generalized rational correctors

  • T. H. Clarysse
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. LAMBERT and B. SHAW: On the numerical solution of y′=f(x, y) by a class of formulae based on rational approximation. Mathematics of Computation 19 (1965), pp. 456–462.MathSciNetzbMATHGoogle Scholar
  2. 2.
    H.C. THACHER, Jr.: Closed rational integration formulas. The computer Journal, Vol. 8 (1966), pp. 362–367.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Y.L. LUKE, W. FAIR, J. WIMP: Predictor-corrector formulas based on rational interpolatts. Comp. & Maths. with Appl., Vol. 1 (1975), pp. 3–12.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R.C. WEAST: CRC-Handbook of tables for mathematics. (4 th. ed) 1970Google Scholar
  5. 5.
    E.W. CHENEY: Introduction to approximation theory, 1966.Google Scholar
  6. 6.
    R. BELLMAN: Introduction to Matrix analysis, 1970.Google Scholar
  7. 7.
    F.R. GANTMACHER: The theory of matrices, Vol. I, 1960.Google Scholar
  8. 8.
    T.H. CLARYSSE: Rational predictor-corrector methods for nonlinear Volterra integral equations of the second kind. in L.N.M. 765, “Padé approximation and its applications”, Proceedings Antwerp 1979, pp. 278–294Google Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • T. H. Clarysse
    • 1
  1. 1.Dept. Applied MathematicsK.U.LeuvenHeverleeBelgium

Personalised recommendations