Advertisement

Error analysis of incoming and outgoing schemes for the trigonometric moment problem

  • A. Bultheel
  • K. U. Leuven
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)

Abstract

The solution of the trigonometric moment problem involves the computation of a (0/n) Laurent-Padé approximant for a positive real function on the complex unit circle. The incoming scheme is equivalent with the recursion for Szegö's orthogonal polynomials, while the outgoing scheme is equivalent to the schur recursion for contractions of the unit disc. The numerical stability of both algorithms is proved under certain conditions via a backward error analysis.

Keywords

Error Analysis Condition Number Toeplitz Matrice Pade Approximant Pade Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, London, 1965.zbMATHGoogle Scholar
  2. [2]
    U. Grenander, G. Szegö, Toeplitz forms and their applications, University of California Press, Berkeley, 1958.zbMATHGoogle Scholar
  3. [3]
    H.J. Landau, The classical moment problem: Hilbertian proofs, Journ. of Funct. Anal. 38, (1980), pp. 255–272.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Szegö, Orthogonal polynomials, A.M.S. Colloquium publ. XXIII, AMS Providence, Rhode Island, 1939.Google Scholar
  5. [5]
    W.B. Gragg, Laurent-, Fourier-and Chebyshev-Padé tables, in E.B. Saff, R.S. Varga (eds.), Padé and rational approximation, Theory and applications, Academic Press, New York, 1977, pp. 61–72.CrossRefGoogle Scholar
  6. [6]
    C. Brezinski, Padé type approximation and general orthogonal polynomials, Birkhauser Verlag, Basel, 1980.CrossRefzbMATHGoogle Scholar
  7. [7]
    W.J. Thron, Two-point Padé tables, T-fractions and sequences of Schur, in E.B. Saff, R.S. Varga(op. cit.), pp. 215–226.CrossRefGoogle Scholar
  8. [8]
    A. Bultheel, P. Dewilde, On the relation between Padé approximation algorithms and Levinson/Schur recursive methods, in Proc. Conf. Signal Processing, EUSIPCO-80, M. Kunt, F. de Coulon (eds.), North-Holland, 1980, pp. 517–523.Google Scholar
  9. [9]
    N. Wiener, P. Masani, The prediction theory of multivariate stochastic processes, Acta Math. 98, (1957), pp. 111–150 and 99, (1958), pp. 93–139.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    V. Cappellini, A.G. Constantinides, P. Emiliani, Digital filters and their applications, Ac. Press, New York, 1978.Google Scholar
  11. [11]
    J.D. Markel, A.H. Gray Jr., Linear prediction of speech, Springer-Verlag, Berlin, 1976.CrossRefzbMATHGoogle Scholar
  12. [12]
    J. Schur, Ueber Pot enzreihen die im Innern des Einheitskreises beschränkt sind, J.f.d.R.u.Angew. Math. 147, (1917), pp. 205–232 and 148 (1918), pp. 122–145.MathSciNetGoogle Scholar
  13. [13]
    A. Bultheel, Recursive algorithms for the matrix Padé problem, Math. of Comp. 35 (151), 1980, pp. 875–892.MathSciNetzbMATHGoogle Scholar
  14. [14]
    L.S. de Jong, Numerical aspects of the recursive realization algorithm, SIAM J. Cont. and Opt. 16, (1978), pp. 646–659.CrossRefzbMATHGoogle Scholar
  15. [15]
    A. Bultheel, Towards an error analysis of fast Toeplitz factorization, Rept. TW 44, K.U.Leuven, Afd. Toeg. Wisk. & Progr., May 1979.Google Scholar
  16. [16]
    J.H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.zbMATHGoogle Scholar
  17. [17]
    G. Cybenko, Error analysis of Durbin's algorithm, to appear in SIAM J. for Scient. and Stat. Comp.Google Scholar
  18. [18]
    L.S. de Jong, Towards a formal definition of numerical stability, Numer. Math. 28, (1977), pp. 211–219.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • A. Bultheel
    • 1
  • K. U. Leuven
    • 1
  1. 1.Afd. Toegepaste Wiskunde en ProgrammatieHeverleeBelgium

Personalised recommendations