Advertisement

Pade-approximations in number theory

  • F. Reukers
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-R] K. Alladi, M. Robinson, On certain irrational values of the logarithm, Lecture Notes in Math. 751, 1–9.Google Scholar
  2. [A] R. Apéry, Irrationalité de ζ(2) et ζ(3) “Journées arithmétiques de Luminy”, Astérisque no 61, 1979, 11–13.zbMATHGoogle Scholar
  3. [Ba1] A. Baker, Rational approximations to \(^3 \surd 2\) and other algebraic numbers, Quart. J. Math. Oxford, 15(1964), 375–383.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Ba2] A. Baker, Transcendental Number Theory (Cambridge, 1975).Google Scholar
  5. [Be1] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc., 11(1979), 268–272.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Be2] F. Beukers, Legendre polynomials in irrationality proofs, Bull. Australian Math. Soc. (to appear).Google Scholar
  7. [Be3] F. Beukers, The generalised Ramanujan-Nagell equation, Thesis, University of Leiden (1979), also to appear in Acta Arithmetica.Google Scholar
  8. [C1] G.V. Chudnovsky, C.R. Acad. Sc. Paris, 288(1979), 607–609, 965–967, 1001–1003.MathSciNetGoogle Scholar
  9. [C2] G.V. Chudnovsky, Padé-approximations to the generalized hypergeometric functions I, J. Math. pures et appl. 58(1979), 445–476.MathSciNetzbMATHGoogle Scholar
  10. [C3] G.V. Chudnovsky, Rational and Padé-approximations to solutions of linear differential equations and the monodromy theory, Lecture Notes in Physics 126, 136–169.Google Scholar
  11. [C4] G.V. Chudnovsky, Padé-approximation and the Riemann monodromy problem, Proceedings of the NATO Advanced Study Institute, held at Cargèse, Corsica, France, June 24–July 7, 1979.Google Scholar
  12. [D] Y. DOMAR, On the diophantine equation |Axn−Byn|=1, n≥5, Math. Scand. 2(1954), 29–32.MathSciNetzbMATHGoogle Scholar
  13. [H] Ch. Hermite, Sur la fonction exponentielle, Oeuvres III, 150–181.Google Scholar
  14. [J] H. Jager, A multidimensional generalization of the Padé table, Thesis, University of Amsterdam (1964).Google Scholar
  15. [L] F. Lindemann, Ueber die Zahl π, Math. Ann. 20(1882), 213–225.MathSciNetCrossRefGoogle Scholar
  16. [M] K. Mahler, Application of some formulae by Hermite to the approximation of exponentials and logarithms, Math. Ann. 168(1976), 200–227.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [P] A.J. van der Poorten, A proof that Euler missed… Apéry's proof of the irrationality of ζ(3), Math. Intelligencer, 1(1978), 195–203.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [R] E. Reyssat, Irrationalité de ζ(3) selon Apéry, Sém. Delange-Pisot-Poitou, 20e année, 1978/79, no 6.Google Scholar
  19. [Si1] C.L. Siegel, Transcendental Numbers (Princeton 1949).Google Scholar
  20. [Si2] C.L. Siegel, Die Gleichung axn−byn=c, Math. Ann. 114(1937), 57–68.MathSciNetCrossRefGoogle Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • F. Reukers
    • 1
  1. 1.Mathematisch InstituutRijksuniversiteit LeidenLeidenThe Netherlands

Personalised recommendations