Pade-approximations in number theory

  • F. Reukers
Part II: Short Communications
Part of the Lecture Notes in Mathematics book series (LNM, volume 888)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-R] K. Alladi, M. Robinson, On certain irrational values of the logarithm, Lecture Notes in Math. 751, 1–9.Google Scholar
  2. [A] R. Apéry, Irrationalité de ζ(2) et ζ(3) “Journées arithmétiques de Luminy”, Astérisque no 61, 1979, 11–13.zbMATHGoogle Scholar
  3. [Ba1] A. Baker, Rational approximations to \(^3 \surd 2\) and other algebraic numbers, Quart. J. Math. Oxford, 15(1964), 375–383.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Ba2] A. Baker, Transcendental Number Theory (Cambridge, 1975).Google Scholar
  5. [Be1] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc., 11(1979), 268–272.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Be2] F. Beukers, Legendre polynomials in irrationality proofs, Bull. Australian Math. Soc. (to appear).Google Scholar
  7. [Be3] F. Beukers, The generalised Ramanujan-Nagell equation, Thesis, University of Leiden (1979), also to appear in Acta Arithmetica.Google Scholar
  8. [C1] G.V. Chudnovsky, C.R. Acad. Sc. Paris, 288(1979), 607–609, 965–967, 1001–1003.MathSciNetGoogle Scholar
  9. [C2] G.V. Chudnovsky, Padé-approximations to the generalized hypergeometric functions I, J. Math. pures et appl. 58(1979), 445–476.MathSciNetzbMATHGoogle Scholar
  10. [C3] G.V. Chudnovsky, Rational and Padé-approximations to solutions of linear differential equations and the monodromy theory, Lecture Notes in Physics 126, 136–169.Google Scholar
  11. [C4] G.V. Chudnovsky, Padé-approximation and the Riemann monodromy problem, Proceedings of the NATO Advanced Study Institute, held at Cargèse, Corsica, France, June 24–July 7, 1979.Google Scholar
  12. [D] Y. DOMAR, On the diophantine equation |Axn−Byn|=1, n≥5, Math. Scand. 2(1954), 29–32.MathSciNetzbMATHGoogle Scholar
  13. [H] Ch. Hermite, Sur la fonction exponentielle, Oeuvres III, 150–181.Google Scholar
  14. [J] H. Jager, A multidimensional generalization of the Padé table, Thesis, University of Amsterdam (1964).Google Scholar
  15. [L] F. Lindemann, Ueber die Zahl π, Math. Ann. 20(1882), 213–225.MathSciNetCrossRefGoogle Scholar
  16. [M] K. Mahler, Application of some formulae by Hermite to the approximation of exponentials and logarithms, Math. Ann. 168(1976), 200–227.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [P] A.J. van der Poorten, A proof that Euler missed… Apéry's proof of the irrationality of ζ(3), Math. Intelligencer, 1(1978), 195–203.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [R] E. Reyssat, Irrationalité de ζ(3) selon Apéry, Sém. Delange-Pisot-Poitou, 20e année, 1978/79, no 6.Google Scholar
  19. [Si1] C.L. Siegel, Transcendental Numbers (Princeton 1949).Google Scholar
  20. [Si2] C.L. Siegel, Die Gleichung axn−byn=c, Math. Ann. 114(1937), 57–68.MathSciNetCrossRefGoogle Scholar

Copyright information

© Srpinger-Verlag 1981

Authors and Affiliations

  • F. Reukers
    • 1
  1. 1.Mathematisch InstituutRijksuniversiteit LeidenLeidenThe Netherlands

Personalised recommendations