Skip to main content

The infinite variety of logics

  • Invited Papers
  • Conference paper
  • First Online:
Book cover KI-98: Advances in Artificial Intelligence (KI 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1504))

Included in the following conference series:

Abstract

Every knowledge representation language is a thinly disguised version of logic, often with a specialized ontology built into the notation. The number of possible notations for pure logic and the number of ontologies that could be combined with them are infinite. No single notation can ever be ideal for all possible applications, and new ones will always be found that can help to simplify various kinds of problems. Fortunately, the great diversity of logics can all be related to one another through a relatively small number of fundamental principles. This paper presents some examples that illustrate the advantages of different representation and the methods of mapping one to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • E. W. Beth. Semantic Entailment and Formal Derivability. North-Holland Publishing Co., Amsterdam, 1955.

    Google Scholar 

  • R. Carnap. Autobiography. In P. Schilpp, editor, The Philosophy of Rudolf Carnap, pages 3–84. Open Court Press, La Salle, IL????

    Google Scholar 

  • R. Carnap. Einf"uhrung in die symbolische Logik. Dover Publications, New York, 1954. translated as Introduction to Symbolic Logic and its Applications.

    Google Scholar 

  • R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2: 189–208, 1971.

    Article  MATH  Google Scholar 

  • G. Gentzen. Untersuchungen über das logische Schliessen I II. North-Holland Publishing Co., Amsterdam, 1935. English translation in The Collected Papers of Gerhard Gentzen, pp. 68–131.

    Google Scholar 

  • P. Gr"unewald. Causation and nonmonotonic temporal reasoning. In G. Brewka, C. Habel, and B. Nebel, editors, KI-97: Advances in Artificial Intelligence, LNAI 1303, pages 159–170. Springer Verlag, Berlin, 1997.

    Google Scholar 

  • S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. Artificial Intelligence, 33: 379–412, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Kamp. Events, discourse representations, and temporal references. Langages, 64: 39–64, 1981.

    Google Scholar 

  • J. McCarthy. Situations, actions, and causal laws. In M. Stanford AI Memo No. 2. Reprinted in Minsky, editor, Semantic Information Processing, pages 410–418. MIT Press, Cambridge, MA, 1963.

    Google Scholar 

  • J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial intelligence. Edinburgh University Press, 1969.

    Google Scholar 

  • J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29: 241–288, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers, San Mateo, CA, 1988.

    MATH  Google Scholar 

  • C. S. Peirce. On the algebra of logic. American Journal of Mathematics, 7: 180–202, 1985.

    Article  MathSciNet  Google Scholar 

  • C. Rieger. An organization of knowledge for problem solving and language comprehension. Artificial Intelligence, 7: 89–127, 1976.

    Article  MathSciNet  Google Scholar 

  • D. D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton, The Hague, 1973.

    Google Scholar 

  • J. A. Robinson. A machine oriented logic based on the resolution principle. Journal of the ACM, 12: 23–41, 1965.

    Article  MATH  Google Scholar 

  • J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading, MA, 1984.

    Google Scholar 

  • J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foundations. PWS Publishing Co., Pacific Grove, CA, 1999.

    Google Scholar 

  • A. S. Troelstra. Lectures on Linear Logic. CSLI, Stanford, CA, 1992.

    MATH  Google Scholar 

  • E. R. Tufte. Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics Press, 1997.

    Google Scholar 

Download references

Authors

Editor information

Otthein Herzog Andreas Günter

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sowa, J.F. (1998). The infinite variety of logics. In: Herzog, O., Günter, A. (eds) KI-98: Advances in Artificial Intelligence. KI 1998. Lecture Notes in Computer Science, vol 1504. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0095426

Download citation

  • DOI: https://doi.org/10.1007/BFb0095426

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65080-5

  • Online ISBN: 978-3-540-49656-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics