Skip to main content

Parallel computation of multidimensional scattering wavefunctions for Helmholtz/Schroedinger equations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1541))

Abstract

Multidimensional scattering wavefunctions are calculated using a new fully distributed parallel solver for the Helmholtz/Schroedinger equations. The solver is based on a parallel preconditioner which is derived from the generic structure of the Helmholtz/Schroedinger partial differential equations with scattering boundary conditions. The approach is useful for a broad range of scientific applications, e.g. in nano-electronics, fiber optics and multidimensional quantum scattering calculations. With minor changes, the solver can be applied as an exponential propagator for time-dependent Helmholtz/Schroedinger initial value problems. Examples are given for 3D models of a wave propagation in a discontinuous waveguide and of electron transmission through a water barrier.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peskin U. and Miller W. H.: Reactive scattering theory for field induced transition. J. Chem. Phys. 102, (1995) 4084.

    Article  Google Scholar 

  2. Peskin U., Miller W. H. and Edlund Å.: Quantum time-evolution in time-dependent fields and time-independent reactive-scattering calculations via an efficient Fourier grid preconditioner. J. Chem. Phys. 103, (1995) 10030.

    Article  Google Scholar 

  3. Vorobeichik I., Moiseyev, N., Neuhauser D., Orenstein M. and Peskin U. Calculation of light distribution in optical devices by a global solution of an inhomogeneous scalar wave equation. IEEE J. Quant. Elec. 33 (1997) 1236.

    Article  Google Scholar 

  4. Edlund Å., Vorobeichik I. and Peskin U.: High order perturbation theory for Helmholtz/Schrödinger equations via a separable preconditioner. J. Comput. Phys. 138 (1997) 788–800.

    Article  MATH  MathSciNet  Google Scholar 

  5. Edlund Å. and Peskin U.: A parallel Green’s operator for multidimensional quantum scattering calculations”. Int. J. of Quant. Chem. (to appear).

    Google Scholar 

  6. Bar-On I., Edlund Å. and Peskin U.: A fully distributed parallel solver for multi-dimensional Helmholtz/Schrödinger equations. (submitted).

    Google Scholar 

  7. Neuhauser D.: State-to-state reactive scattering amplitudes from single-arrangement propagation with absorbing potentials. Chem. Phys. Lett. 200 (1990) 7836.

    Google Scholar 

  8. Seideman T. and Miller W. H.: Calculation of the cumulative reaction probability via a discrete representation with absorbing boundary conditions. J. Chem. Phys. 96 (1992) 4412.

    Article  Google Scholar 

  9. Colbert D. T. and Miller W. H.: A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96 (1992) 1982.

    Article  Google Scholar 

  10. Kosloff R.: in Numerical Grid Methods and Their Application to Schrödinger’s Equation. NATO ASI Series C 412, edited by C. Cerjan (Kluwer, Academic, 1993).

    Google Scholar 

  11. Saad Y.: Iterative methods for sparse linear systems. PWS Publishing, (1996).

    Google Scholar 

  12. Ratowsky R. P., Fleck Jr. J. A., and Feit M. D.: Helmholtz beam propagation in rib waveguides and couplers by iterative Lanczos reduction. Opt. Soc. Am. A. 9 (1992) 265.

    Article  Google Scholar 

  13. Freund R. W., Golub G. H. and Nachtigal N.: Iterative Solution of linear systems. Acta Numerica, 1–44, (1992).

    Google Scholar 

  14. Bar-On I. and Ryaboy V.: Fast Diagonalization of Large and Dense Complex Symmetric Matrices, with Applications to Quantum Reaction Dynamics. SIAM J. of Scientific and Stat. Comp. 28 (1997), 5.

    Google Scholar 

  15. G. H. Golub and C. f. Van Loan Matrix Computations (The John Hopkins University Press, 1989).

    Google Scholar 

  16. Mosyak A., Graf P., Benjamin I. and Nitzan A., J. Phys. Chem. (to appear).

    Google Scholar 

  17. Benjamin I., Evans D. and Nitzan A. Electron tunneling through water layers: Effect of layer structure and thickness. J. Chem. Phys. 106 (1997), 6647–6654.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Jack Dongarra Erik Elmroth Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edlund, Å., Bar-On, I., Peskin, U. (1998). Parallel computation of multidimensional scattering wavefunctions for Helmholtz/Schroedinger equations. In: Kågström, B., Dongarra, J., Elmroth, E., Waśniewski, J. (eds) Applied Parallel Computing Large Scale Scientific and Industrial Problems. PARA 1998. Lecture Notes in Computer Science, vol 1541. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0095327

Download citation

  • DOI: https://doi.org/10.1007/BFb0095327

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65414-8

  • Online ISBN: 978-3-540-49261-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics