Skip to main content

System identification of fuzzy cartesian granule feature models using genetic programming

  • Conference paper
  • First Online:
Fuzzy Logic in Artificial Intelligence (FLAI 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1566))

Included in the following conference series:

Abstract

A Cartesian granule feature is a multidimensional feature formed over the cross product of words drawn from the linguistic partitions of the constituent input features. Systems can be quite naturally described in terms of Cartesian granule features incorporated into additive models (if-then-rules with weighted antecedents) where each Cartesian granule feature focuses on modelling the interactions of a subset of input variables. This can often lead to models that reduce if not eliminate decomposition error, while enhancing the model’s generalisation powers and transparency. Within a machine learning context the system identification of good, parsimonious additive Cartesian granule feature models is an exponential search problem. In this paper we present the G_DACG constructive induction algorithm as a means of automatically identifying additive Cartesian granule feature models from example data. G_DACG combines the powerful optimisation capabilities of genetic programming with a rather novel and cheap fitness function which relies on the semantic separation of concepts expressed in terms of Cartesian granule fuzzy sets in identifying these additive models. G_DACG helps avoid many of the problems of traditional approaches to system identification that arise from feature selection and feature abstraction such as local minima. G_DACG has been applied in the system identification of additive Cartesian granule feature models on a variety of artificial and real world problems. Here we present a sample of those results including those for the benchmark Pima Diabetes problem. A classification accuracy of 79.7% was achieved on this dataset outperforming previous bests of 78% (generally from black box modelling approaches such as neural nets and oblique decision trees).

Supported by European Community Marie Curie Fellowship Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Related Bibliography

  1. H. Almuallim and T. G. Dietterich (1991), “Learning with irrelevant features”, in Proc. AAAI-91, Anaheim, CA, pp 547–552.

    Google Scholar 

  2. J. F. Baldwin (1991) “A Theory of Mass Assignments for Artificial Intelligence”, in IJCAI ’91 Workshops on Fuzzy Logic and Fuzzy Control, Sydney, Australia, Lecture Notes in Artificial Intelligence, A. L. Ralescu, Editor 1991, pp. 22–34.

    Google Scholar 

  3. J. F. Baldwin, J. Lawry and T.P. Martin (1997), “Mass assignment fuzzy ID3 with applications rd, in Proc. Fuzzy Logic: Applications and Future Directions Workshop, London, UK, pp 278–294.

    Google Scholar 

  4. J. F. Baldwin, T. P. Martin and B. W. Pilsworth (1988) “FRIL Manual”, FRIL Systems Ltd, Bristo, BS8 1QX, UK.

    Google Scholar 

  5. J. F. Baldwin, T. P. Martin and B. W. Pilsworth (1995) “FRIL-Fuzzy and Evidential Reasoning in A.I.”, Research Studies Press(Wiley Inc.), ISBN 086380159 5.

    Google Scholar 

  6. J. F. Baldwin, T. P. Martin and J. G. Shanahan (1996) “Modelling with Words using Cartesian Granule Features”, (Report No. ITRC 246), Advanced Computing Research Centre, Dept. of Engineering Maths, University of Bristol, UK.

    Google Scholar 

  7. J. F. Baldwin, T.P. Martin and J. G. Shanahan (1997), “Fuzzy logic methods in vision recognition”, in Proc. Fuzzy Logic: Applications and Future Directions Workshop, London, UK, pp 300–316.

    Google Scholar 

  8. J. F. Baldwin, T. P. Martin and J. G. Shanahan (1997), “Modelling with words using Cartesian granule features”, in Proc. FUZZ-IEEE, Barcelona, Spain, pp 1295–1300.

    Google Scholar 

  9. J. F. Baldwin, T.P. Martin and J. G. Shanahan (1998), “Aggregation in Cartesian granule feature models” in Proc. IPMU, Paris, pp 6.

    Google Scholar 

  10. J. F. Baldwin, T. P. Martin and J. G. Shanahan (1998) “Controlling with words using automatically identified fuzzy Cartestian granule feature models”, (To Appear) International Journal of Approximate Reasoning-Special issue on Fuzzy Logic Control: Advances in Methodology, N/A, pp. 37.

    Google Scholar 

  11. J. F. Baldwin and B. W. Pilsworth (1997), “Genetic Programming for Knowledge Extraction of Fuzzy Rules”, in Proc. Fuzzy Logic: Applications and Future Directions Workshop, London, UK, pp 238–251.

    Google Scholar 

  12. A. Bastian (1995) “Modelling and Identifying Fuzzy Systems under varying User Knowledge”, PhD Thesis, Meiji University, Tokyo

    Google Scholar 

  13. A. Ben-Davis and J. Mandel (1995) “Classification accuracy: machine learning vs. explicit knowledge acquisition”, Machine Learning, 18, pp. 109–114.

    Google Scholar 

  14. A. L. Blum and P. Langley (1997) “Selection of relevant features and examples in machine learning”. Artificial Intelligence, 97, pp. 245–271.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. M. Bossley (1997) “Neurofuzzy Modelling Approaches in System Identification”, PhD Thesis, Department of Electrical and Computer Science, Southampton University, UK

    Google Scholar 

  16. N. Cristianini (1998) “Application of oblique decision trees to Pima diabetes problem”, Personal Communication, Department of Engineering Mathematics, University of Bristol, UK.

    Google Scholar 

  17. P. A. Devijer and J. Kittler (1982) “Pattern Recognition: A Statistical Approach”, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  18. W. J. Frawley, G. Piatetsky-Shapiro and C. J. Matheus (1991) “Knowledge Discovery in Databases: An Overview”, in Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W. J. Frawley, Editors 1991, AAAI Press/MIT Press. Cambridge, Mass, USA. pp. 1–27.

    Google Scholar 

  19. J. H. Friedman (1991) “Multivariate Adaptive Regression Splines”, The Annals of Statistics, 19, pp. 1–141.

    MATH  MathSciNet  Google Scholar 

  20. S. Geman, E. Bienenstock and R Doursat (1992) “Neural networks and the bias/variance dilemma”, Neural computation, 4, pp. 1–58.

    Google Scholar 

  21. J. Hertz, K. Anders and R. G. Palmer (1991) “Introduction to the Theory of Neutral Computation”, Addison-Wesley, New York.

    Google Scholar 

  22. A. G. Ivanhnenko (1971) “Polynomial theory of complex systems”, IEEE Transactions on Systems, Man and Cybernetics, 1(4), pp. 363–378.

    Google Scholar 

  23. I. T. Jolliffe (1986) “Principal Component Analysis”, Springer, New York.

    MATH  Google Scholar 

  24. T. Kalvi (1993) “ASMOD: an algorithm for Adaptive Spline Modelling of Observation Data”, International Journal of Control, 58(4), pp. 947–968.

    MathSciNet  Google Scholar 

  25. M. Kay, J. M. Gawson and P. Norvig (1994) “Verbmobil: A translation system for face-to-face dialog”, CSLI Press, Stanford, California, USA.

    Google Scholar 

  26. K. Kira and L Rendell (1992), “A practical approach to feature selection”, in Proc. 9th Conference in Machine Learning, Aberdeen, Scotland, pp 249–256.

    Google Scholar 

  27. G. J. Klir and B. Yuan (1995) “Fuzzy Sets and Fuzzy Logic, Theory and Applications”, Prentice Hall, New Jersey.

    MATH  Google Scholar 

  28. R Kohavi and G. H. John (1997) “Wrappers for feature selection”, Artificial Intelligence, 97, pp. 273–324.

    Article  MATH  Google Scholar 

  29. R Kohavi and G. H. John (1997) “Inductive and Bayesian learning in medical diagnosis”, Artificial Intelligence, 7, pp. 317–337.

    Google Scholar 

  30. I. Kononenko and S J Hong (1997) “Attribute selection for modelling”, FGCS Special Issue in Data Mining, (Fall), pp. 34–55.

    Google Scholar 

  31. J. R. Koza (1992) “Genetic Programming”, MIT Press, Massachusetts.

    Google Scholar 

  32. J. R. Koza (1994) “Genetic Programming II”, MIT Press, Massachusetts.

    MATH  Google Scholar 

  33. P. Langley (1996) “Elements of Machine Learning,” Morgan Kaufmann, San Francisco, CA, USA.

    Google Scholar 

  34. L. Ljung (1987) “System identification: theory for the user”, Prentice Hall, Englewood Cliffs, New Jersey 07632.

    Google Scholar 

  35. C. J. Merz and P. M. Murphy (1996) “UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html] Irvine, CA”, University of California, Irvine, CA.

    Google Scholar 

  36. R. S. Michalski, I. Bratko and M. Kubat (Ed), (1998), “Machine Learning and Data Mining”, Wiley, New York.

    Google Scholar 

  37. D. Michie, D. J. Spiegelhalter and C. C. Taylor (1993) “Dataset Descriptions and Results”, in Machine Learning, Neural and Statistical Classification, D. Michie, D. J. Spiegelhalter and C. C. Taylor, Editors 1993

    Google Scholar 

  38. D. Michie, D. J. Spiegelhalter and C. C. Taylor (Ed), (1993), “Machine Learning, Neural and Statistical Classification

    Google Scholar 

  39. J. R. Quinlan (1986) “Induction of Decision Trees”, Machine Learning, 1(1), pp. 86–106.

    Google Scholar 

  40. B. Schweizer and A. Sklar (1961) “Associative functions and statistical triangle inequalities”, Publ. Math. Debrecen, 8, pp. 168–186.

    MathSciNet  Google Scholar 

  41. J. G. Shanahan (1996) “Automatic Synthesis of Fuzzy Rule Cartesian Granule Features from Data for both Classification and Prediction”, (Report No. ITRC 247), Advanced Computing Research Centre, Dept. of Engineering Maths, University of Bristol, UK.

    Google Scholar 

  42. J. G. Shanahan (1998) “Cartesian Granule Features: Knowledge Discovery of Additive Models for Classification and Prediction”, PhD Thesis, Dept. of Engineering Maths, University of Bristol, UK.

    Google Scholar 

  43. J. G. Shanahan (1998) “Inductive logic programming with Cartesian granule features”, Personal Communication, Dept. of Engineering Maths, University of Bristol, UK.

    Google Scholar 

  44. H. A. Simon (1983) “Why should machine learn?”, in Machine Learning: An Artificial Intelligence Approach, R. S. Michalski, J. G. Carbonell and T. M. Mitchell, Editors 1983, Springer-Verlag. Berlin. pp. 25–37.

    Google Scholar 

  45. J. W. Smith, et al. (1988), “Using the ADAP learning algorithm to forecast the onset of diabetes mellitus”, in Proc. Symposium on Computer Applications and Medical Care, pp 261–265.

    Google Scholar 

  46. M. Sugeno and T. Yasukawa (1993) “A Fuzzy Logic Based Approach to Qualitative Modelling”, IEEE Trans on Fuzzy Systems, 1(1), pp. 7–31.

    Article  Google Scholar 

  47. G. Syswerda (1989), “Uniform crossover in genetic algorithms”, in Proc. Third Int’l Conference on Genetic Algorithms, pp 989–995.

    Google Scholar 

  48. W. A. Tackett (1995) “Mining the Genetic Program”, IEEE Expert, (6), pp. 28–28.

    Google Scholar 

  49. R. R. Yager (1994) “Generation of Fuzzy Rules by Mountain Clustering”, J. Intelligent and Fuzzy Systems, 2, pp. 209–219.

    Google Scholar 

  50. L. A. Zadeh (1994) “Soft Computing and Fuzzy Logic”, IEEE Software, 11(6), pp. 48–56.

    Article  Google Scholar 

  51. L. A. Zadeh (1996) “Fuzzy Logic=Computing with Words”, IEEE Transactions on Fuzzy Systems, 4(2), pp. 103–111.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Shanahan .

Editor information

Anca L. Ralescu James G. Shanahan

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baldwin, J.F., Martin, T.P., Shanahan, J.G. (1999). System identification of fuzzy cartesian granule feature models using genetic programming. In: Ralescu, A.L., Shanahan, J.G. (eds) Fuzzy Logic in Artificial Intelligence. FLAI 1997. Lecture Notes in Computer Science, vol 1566. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0095073

Download citation

  • DOI: https://doi.org/10.1007/BFb0095073

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66374-4

  • Online ISBN: 978-3-540-48358-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics