Geometry of 2D topological field theories

Part of the Lecture Notes in Mathematics book series (LNM, volume 1620)


Modulus Space Poisson Bracket Monodromy Group Frobenius Manifold Frobenius Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ablowitz M., Chakravarty S., and Takhtajan L., Integrable systems, self-dual Yang-Mills equations and connections with modular forms, Univ. Colorado Preprint PAM # 113 (December 1991).Google Scholar
  2. 2.
    Arnol'd V.I., Normal forms of functions close to degenerate critical points. The Weyl groups A k, D k, E k, and Lagrangian singularities, Functional Anal. 6 (1972) 3–25.Google Scholar
  3. 3.
    Arnol'd V.I., Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976) 557–582.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arnol'd V.I., Indices of singular points of 1-forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth surfaces, Russ. Math. Surv. 34 (1979) 1–42.zbMATHCrossRefGoogle Scholar
  5. 5.
    Arnol'd V.I., Gusein-Zade S.M., and Varchenko A.N., Singularities of Differentiable Maps, volumes I, II, Birkhäuser, Boston-Basel-Berlin, 1988.zbMATHCrossRefGoogle Scholar
  6. 6.
    Arnol'd V.I., Singularities of Caustics and Wave Fronts, Kluwer Acad. Publ., Dordrecht-Boston-London, 1990.zbMATHCrossRefGoogle Scholar
  7. 7.
    van Asch A., Modular forms and root systems, Math. Anal. 222 (1976), 145–170.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Aspinwall P.S., Morrison D.R., Topological field theory and rational curves, Comm. Math. Phys. 151 (1993) 245–262.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Astashkevich A., and Sadov V., Quantum cohomology of partial flag manifolds, hepth/9401103.Google Scholar
  10. 10.
    Atiyah M.F., Topological quantum field theories, Publ. Math. I.H.E.S. 68 (1988) 175.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Atiyah M.F., and Hitchin N., The Geometry and Dynamics of Magnetic Monopoles, Princeton Univ. Press, Princeton, 1988.zbMATHCrossRefGoogle Scholar
  12. 12.
    Balinskii A., and Novikov S., Sov. Math. Dokl. 32 (1985) 228.Google Scholar
  13. 13.
    Balser W., Jurkat W.B., and Lutz D.A., Birkhoff invariants and Stokes multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48–94.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Balser W., Jurkat W.B., and Lutz D.A., On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, SIAM J. Math. Anal. 12 (1981) 691–721.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Batyrev V.V., Quantum cohomology rings of toric manifolds, Astérisque 218 (1993), 9–34.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bernstein J.N., and Shvartsman O.V., Chevalley theorem for complex crystallographic group, Funct. Anal. Appl. 12 (1978), 308–310; Chevalley theorem for complex crystallographic groups, Complex crystallographic Coxeter groups and affine root systems, In: Seminar on Supermanifolds, 2, ed. D. Leites, Univ. Stockholm (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bershadsky M., Cecotti S., Ooguri H., and Vafa C., Kodaira—Spencer theory of gravity and exact results for quantum string amplitudes, Preprint HUTP-93/A025, RIMS-946, SISSA-142/93/EP.Google Scholar
  18. 18.
    Beukers F., and Heckman G., Monodromy for hypergeometric function n F n-1, Invent. Math. 95 (1989), 325–354.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Birkhoff G.D., Singular points of ordinary linear differential equations, Proc. Amer. Acad. 49 (1913), 436–470.zbMATHCrossRefGoogle Scholar
  20. 20.
    Birman J., Braids, Links, and Mapping Class Groups, Princeton Univ. Press, Princeton, 1974.Google Scholar
  21. 21.
    Blok B., and Varchenko A., Topological conformal field theories and the flat coordinates, Int. J. Mod. Phys. A7 (1992) 1467.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Bourbaki N., Groupes et Algèbres de Lie, Chapitres 4, 5 et 6 Masson, Paris-New York-Barcelone-Milan-Mexico-Rio de Janeiro, 1981.zbMATHGoogle Scholar
  23. 23.
    Brezin E., Itzykson C., Parisi G., and Zuber J.-B. Comm. Math. Phys. 59 (1978) 35. Bessis D., Itzykson C., and Zuber J.-B., Adv. Appl. Math. 1 (1980) 109. Mehta M.L., Comm. Math. Phys. 79 (1981) 327; Chadha S., Mahoux G., and Mehta M.L., J. Phys. A14 (1981) 579.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Brezin E., and Kazakov V, Exactly solvable field theories of closed strings, Phys. Lett. B236 (1990) 144.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Brieskorn E. Singular elements of semisimple algebraic groups, In: Actes Congres Int. Math., 2, Nice (1970), 279–284.Google Scholar
  26. 26.
    Candelas P., de la Ossa X.C., Green P.S., and Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991), 21–74.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Cassels J.W., An Introduction to the Geometry of Numbers, Springer, N.Y. etc., 1971.zbMATHGoogle Scholar
  28. 28.
    Cecotti S. and Vafa C., Topological-antitopological fusion, Nucl. Phys. B367 (1991) 359–461.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Cecotti S. and Vafa C., On classification of N=2 supersymmetric theories, Comm. Math. Phys. 158 (1993), 569–644.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ceresole A., D'Auria R., and Regge T., Duality group for Calabi-Yau 2-modulii space, Preprint POLFIS-TH. 05/93, DFTT 34/93.Google Scholar
  31. 31.
    Chazy J., Sur les équations différentiellles dont l'intégrale générale possède un coupure essentielle mobile, C.R. Acad. Sc. Paris 150 (1910), 456–458.zbMATHGoogle Scholar
  32. 32.
    Chakravarty S., Private communication, June 1993.Google Scholar
  33. 33.
    Coxeter H.S.M., Discrete groups generated by reflections, Ann. Math. 35 (1934) 588–621.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Coxeter H.S.M., The product of the generators of a finite group generated by reflections, Duke Math. J. 18 (1951) 765–782.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Darboux G., Leçons sur les systèmes ortogonaux et les cordonnées curvilignes, Paris, 1897. Egoroff D.Th., Collected papers on differential geometry, Nauka, Moscow (1970) (in Russian).Google Scholar
  36. 36.
    Date E., Kashiwara M, Jimbo M., and Miwa T., Transformation groups for soliton equations, In: Nonlinear Integrable Systems—Classical Theory and Quantum Theory, World Scientific, Singapore, 1983, pp. 39–119.Google Scholar
  37. 37.
    Deligne P., and Mumford D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 45 (1969), 75.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Di Francesco P., Lesage F., and Zuber J.B., Graph rings and integrable perturbations of N=2 superconformal theories, Nucl. Phys. B408 (1993), 600–634.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Di Francesco P., and Itzykson C., Quantum intersection rings, Preprint SPhT 94/111, September 1994.Google Scholar
  40. 40.
    Dijkgraaf R., A Geometrical Approach to Two-Dimensional Conformal Field Theory, Ph.D. Thesis (Utrecht, 1989).Google Scholar
  41. 41.
    Dijkgraaf R., Intersection theory, integrable hierarchies and topological field theory, Preprint IASSNS-HEP-91/91, December 1991.Google Scholar
  42. 42.
    Dijkgraaf R., E. Verlinde, and H. Verlinde, Nucl. Phys. B 352(1991) 59; Notes on topological string theory and 2D quantum gravity, Preprint PUPT-1217, IASSNS-HEP-90/80, November 1990.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Dijkgraaf R., and Witten E., Nucl. Phys. B 342 (1990) 486.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Drinfel'd V.G. and Sokolov V.V., J. Sov. Math. 30 (1985) 1975.CrossRefGoogle Scholar
  45. 45.
    Donagi R., and Markman E., Cubics, Integrable systems, and Calabi-Yau threefolds, Preprint (1994).Google Scholar
  46. 46.
    Douglas M., and Shenker S., Strings in less than one dimension, Nucl. Phys. B335 (1990) 635.MathSciNetCrossRefGoogle Scholar
  47. 47.
    Dubrovin B., On differential geometry of strongly integrable systems of hydrodynamic type, Funct. Anal. Appl. 24 (1990).Google Scholar
  48. 48.
    Dubrovin B., Differential geometry of moduli spaces and its application to soliton equations and to topological field theory, Preprint No. 117, Scuola Normale Superiore, Pisa (1991).Google Scholar
  49. 49.
    Dubrovin B., Hamiltonian formalism of Whitham-type hierarchies and topological Landau-Ginsburg models, Comm. Math. Phys. 145 (1992) 195–207.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Dubrovin B., Integrable systems in topological field theory, Nucl. Phys. B 379 (1992) 627–689.MathSciNetCrossRefGoogle Scholar
  51. 51.
    Dubrovin B., Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993), 539–564.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Dubrovin B., Integrable systems and classification of 2-dimensional topological field theories, In “Integrable Systems”, Proceedings of Luminy 1991 conference dedicated to the memory of J.-L. Verdier, Eds. O. Babelon, O. Cartier, Y.Kosmann-Schwarbach, Birkhäuser, 1993.Google Scholar
  53. 53.
    Dubrovin B., Topological conformal field theory from the point of view of integrable systems In: Proceedings of 1992 Como workshop “Quantum Integrable Field Theories”. Eds. L. Bonora, G.Mussardo, A.Schwimmer, L.Giradello, and M.Martellini, Plenum Press, 1993.Google Scholar
  54. 54.
    Dubrovin B., Differential geometry of the space of orbits of a Coxeter group, Preprint SISSA-29/93/FM (February 1993).Google Scholar
  55. 55.
    Dubrovin B., Fokas A. S., and Santini P.M., Integrable functional equations and algebraic geometry, Duke Math. J. (1994).Google Scholar
  56. 56.
    Dubrovin B., Krichever, I. and Novikov S. Integrable Systems. I. Encyclopaedia of Mathematical Sciences, vol. 4 (1985) 173 Springer-Verlag.CrossRefGoogle Scholar
  57. 57.
    Dubrovin B. and Novikov S.P., The Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogoliubov-Whitham averaging method. Sov. Math. Doklady 27 (1983) 665–669.zbMATHGoogle Scholar
  58. 58.
    Dubrovin B. and Novikov S.P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russ. Math. Surv. 44:6 (1989) 35–124.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Dubrovin B., Novikov S.P., and Fomenko A.T. Modern Geometry, Parts 1–3, Springer Verlag.Google Scholar
  60. 60.
    Eguchi T., Kanno H., Yamada Y., and Yang S.-K., Topological strings, flat coordinates and gravitational descendants, Phys. Lett. B305 (1993), 235–241; Eguchi T., Yamada Y., and Yang S.-K., Topological field theories and the period integrals, Mod. Phys. Lett. A 8 (1993), 1627–1638.MathSciNetCrossRefGoogle Scholar
  61. 61.
    Eguchi T., Yamada Y., and Yang S.-K., On the genus expansion in the topological string theory, Preprint UTHEP-275 (May 1994).Google Scholar
  62. 62.
    Eichler M., and Zagier D., The Theory of Jacobi Forms, Birkhäuser, 1983.Google Scholar
  63. 63.
    Flaschka H., Forest M.G., and McLaughlin D.W., Comm. Pure Appl. Math. 33 (1980) 739.MathSciNetCrossRefGoogle Scholar
  64. 64.
    Flaschka H., and Newell A.C., Comm. Math. Phys. 76 (1980) 65.MathSciNetCrossRefGoogle Scholar
  65. 65.
    Fokas A.S., Ablowitz M.J., On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys. 23 (1982), 2033–2042.MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Fokas, A.S., Leo R.A., Martina, L., and Soliani, G., Phys. Lett. A115 (1986) 329.MathSciNetCrossRefGoogle Scholar
  67. 67.
    Frobenius F.G., and Stickelberger L., Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten, J. Reine Angew. Math. 92 (1882).Google Scholar
  68. 68.
    Gelfand I.M., and Dickey L.A., A Family of Hamilton Structures Related to Integrable Systems, preprint IPM/136 (1978) (in Russian). Adler M., Invent. Math. 50 (1979) 219. Gelfand I.M., and Dorfman I., Funct. Anal. Appl. 14 (1980) 223.Google Scholar
  69. 69.
    Givental A.B., Sturm theorem for hyperelliptic integrals, Algebra and Analysis 1 (1989), 95–102 (in Russian).MathSciNetGoogle Scholar
  70. 70.
    Givental A.B., Convolution of invariants of groups generated by reflections, and connections with simple singularities of functions, Funct. Anal. 14 (1980) 81–89.MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Givental A., Kim B., Quantum cohomology of flag manifolds and Toda lattices, Preprint UC Berkeley (December 1993).Google Scholar
  72. 72.
    Gromov M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307.MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Gross, D.J., and Migdal A.A., A nonperturbative treatment of two dimensional quantum gravity, Phys. Rev. Lett. 64 (1990) 127.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Gurevich A.V., and Pitaevskii L.P., Sov. Phys. JETP 38 (1974) 291; ibid., Sov. Phys. JETP, 93 (1987) 871; JETP Letters 17 (1973) 193. Avilov V., and Novikov S., Sov. Phys. Dokl. 32 (1987) 366. Avilov V., Krichever I., and Novikov S., Sov. Phys. Dokl. 32 (1987) 564.Google Scholar
  75. 75.
    Halphen G.-H., Sur un systèmes d'équations différentielles, C.R. Acad. Sc. Paris 92 (1881), 1001–1003, 1004–1007.Google Scholar
  76. 76.
    Hanany A., Oz Y., and Plesser M.R., Topological Landau-Ginsburg formulation and integrable structures of 2d string theory, IASSNS-HEP 94/1.Google Scholar
  77. 77.
    Hitchin N., Talk at ICTP (Trieste), April, 1993.Google Scholar
  78. 78.
    Hitchin N., Poncelet polygons and the Painlevé equations, Preprint, February, 1994.Google Scholar
  79. 79.
    Hosono S., Klemm A., Theisen S., and Yau S.-T., Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Preprint HUTMP-94/02, CERN-TH.7303/94, LMU-TPW-94-03 (June 1994).Google Scholar
  80. 80.
    Hurwitz A., Über die Differentisialglechungen dritter Ordnung, welchen die Formen mit linearen Transformationen in sich genügen, Math. Ann. 33 (1889), 345–352.MathSciNetCrossRefGoogle Scholar
  81. 81.
    Ince E.L., Ordinary Differential Equations, London-New York etc., Longmans, Green and Co., 1927.zbMATHGoogle Scholar
  82. 82.
    Its A.R., and Novokshenov V.Yu., The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Mathematics 1191, Springer-Verlag, Berlin 1986.zbMATHGoogle Scholar
  83. 83.
    Jacobi C.G.J., Crelle J. 36 (1848), 97–112.MathSciNetCrossRefGoogle Scholar
  84. 84.
    Jimbo M., and Miwa T., Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II. Physica 2D (1981) 407–448.MathSciNetzbMATHGoogle Scholar
  85. 85.
    Kac V.G., and Peterson D., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), 125–264.MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Kim B., Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairing, Preprint UC Berkeley (May 1994).Google Scholar
  87. 87.
    Koblitz N., Introduction to Elliptic Curves and Modular Forms, Springer, New York etc., 1984.zbMATHCrossRefGoogle Scholar
  88. 88.
    Kodama Y A method for solving the dispersionless KP equation and its exact solutions, Phys. Lett. 129A (1988), 223–226; Kodama Y. and Gibbons J., A method for solving the dispersionless KP hierarchy and its exact solutions, II, Phys. Lett. 135A (1989) 167–170; Kodama Y., Solutions of the dispersionless Toda equation, Phys. Lett. 147A (1990), 477–482.MathSciNetCrossRefGoogle Scholar
  89. 89.
    Kontsevich M., Funct. Anal. 25 (1991) 50.MathSciNetCrossRefGoogle Scholar
  90. 90.
    Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1–23.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Kontsevich M., Enumeration of rational curves via torus action, Comm. Math. Phys. 164 (1994) 525–562.MathSciNetCrossRefGoogle Scholar
  92. 92.
    Kontsevich M., Manin Yu.I., Gromov-Witten classes, quantum cohomology and enumerative geometry, MPI preprint (1994).Google Scholar
  93. 93.
    Krichever I.M., Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl. 11 (1977), 12–26.MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Krichever I.M., The dispersionless Lax equations and topological minimal models, Commun. Math. Phys. 143 (1991), 415–426.MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Krichever I.M., The τ-function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994) 437–475.MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Lerche W., Generalized Drinfeld-Sokolov hierarchies, quantum rings, and W-gravity, Preprint CERN-TH.6988/93.Google Scholar
  97. 97.
    Lerche W., Chiral rings and integrable systems for models of topological gravity, Preprint CERN-TH.7128/93.Google Scholar
  98. 98.
    Lerche W., On the Landau-Ginsburg realization of topological gravities, Preprint CERN-TH.7210/94 (March 1994).Google Scholar
  99. 99.
    Lerche W., Vafa C., and Warner N.P., Chiral rings in N=2 superconformal theories, Nucl. Phys. B324 (1989), 427–474.MathSciNetCrossRefGoogle Scholar
  100. 100.
    Li K., Topological gravity and minimal matter, CALT-68-1662, August 1990; Recursion relations in topological gravity with minimal matter, CALT-68-1670, September 1990.Google Scholar
  101. 101.
    Looijenga E., A period mapping for certain semiuniversal deformations, Compos. Math. 30 (1975) 299–316.MathSciNetzbMATHGoogle Scholar
  102. 102.
    Looijenga E., Root systems and elliptic curves, Invest. Math. 38 (1976), 17–32.MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Looijenga E., Invariant theory for generalized root systems, Invent. Math. 61 (1980), 1–32.MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Losev A., Descendants constructed from matter field in topological Landau-Ginsburg theories coupled to topological gravity, Preprint ITEP (September 1992).Google Scholar
  105. 105.
    Losev A.S., and Polyubin I., On connection between topological Landau-Ginsburg gravity and integrable systems, hep-th/9305079 (May, 1993).Google Scholar
  106. 106.
    Maassarani Z., Phys. Lett. 273B (1992) 457.MathSciNetGoogle Scholar
  107. 107.
    Magnus W., Oberhettinger F., and Soni R.P., Formulas and Theorems for the special Functions of Mathematical Physics, Springer-Verlag, Berlin-Heidelberg-New York, 1966.zbMATHCrossRefGoogle Scholar
  108. 108.
    Magri F., J. Math. Phys. 19 (1978) 1156.MathSciNetCrossRefGoogle Scholar
  109. 109.
    Malgrange B., Équations Différentielles à Coefficients Polynomiaux, Birkhäuser, 1991.Google Scholar
  110. 110.
    McCoy B.M., Tracy C.A., Wu T.T., J. Math. Phys. 18 (1977) 1058.MathSciNetCrossRefGoogle Scholar
  111. 111.
    McDuff D., and Salamon D., J-Holomorphic curves and quantum cohomology, Preprint SUNY and Math. Inst. Warwick. (April 1994).Google Scholar
  112. 112.
    Miller E., The homology of the mapping class group, J. Diff. Geom. 24 (1986), 1. Morita S., Characteristic classes of surface bundles, Invent. Math. 90 (1987), 551. Mumford D., Towards enumerative geometry of the moduli space of curves, In: Arithmetic and Geometry, eds. M. Artin and J. Tate, Birkhäuser, Basel, 1983.MathSciNetzbMATHGoogle Scholar
  113. 113.
    Miwa T., Painlevé property of monodromy presereving equations and the analyticity of τ-functions. Publ. RIMS 17 (1981), 703–721.MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Morrison D.R., Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993), 223–247.MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Nagura M., and Sugiyama K., Mirror symmetry of K3 and torus, Preprint UT-663.Google Scholar
  116. 116.
    Nakatsu T., Kato A., Noumi M., and Takebe T., Topological strings, matrix integrals, and singularity theory, Phys. Lett. B322 (1994), 192–197.MathSciNetCrossRefGoogle Scholar
  117. 117.
    Natanzon S., Sov. Math. Dokl. 30 (1984) 724.Google Scholar
  118. 118.
    Noumi M., Expansions of the solution of a Gauss-Manin system at a point of infinity, Tokyo J. Math. 7:1 (1984), 1–60.MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Novikov S.P. (Ed.), The Theory of Solitons: the Inverse Problem Method, Nauka, Moscow, 1980. Translation: Plenum Press, N.Y., 1984.zbMATHGoogle Scholar
  120. 120.
    Novikov S.P., and Veselov A.P., Sov. Math. Doklady (1981)Google Scholar
  121. 121.
    Okamoto K., Studies on the Painlevé equations, Annali Mat. Pura Appl. 146 (1987), 337–381.zbMATHCrossRefGoogle Scholar
  122. 122.
    Okubo K., Takano K., and Yoshida S., A connection problem for the generalized hypergeometric equation, Fukcial. Ekvac. 31 (1988), 483–495.MathSciNetzbMATHGoogle Scholar
  123. 123.
    Olver P.J., Math. Proc. Cambridge Philos. Soc. 88 (1980) 71.MathSciNetCrossRefGoogle Scholar
  124. 124.
    Piunikhin S., Quantum and Floer cohomology have the same ring structure, Preprint MIT (March 1994).Google Scholar
  125. 125.
    Procesi C., and Schwarz G., Inequalities defining orbit spaces, Invent. Math. 81 (1985) 539–554.MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Rankin R.A., The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc. 20 (1956), 103–116.MathSciNetzbMATHGoogle Scholar
  127. 127.
    Ruan Y., Tian G., A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), 269–278.MathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    Rudakov A.N., Integer valued bilinear forms and vector bundles, Math. USSR Sbornik 180 (1989), 187–194.MathSciNetzbMATHGoogle Scholar
  129. 129.
    Sadov V., On equivalence of Floer's and quantum cohomology, Preprint HUTP-93/A027Google Scholar
  130. 130.
    Saito K., On a linear structure of a quotient variety by a finite reflection group, Preprint RIMS-288 (1979).Google Scholar
  131. 131.
    Saito K., Yano T., and Sekeguchi J, On a certain generator system of the ring of invariants of a finite reflection group, Comm. in Algebra 8 (4) (1980) 373–408.MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Saito K., On the periods of primitive integrals. I., Harvard preprint, 1980.Google Scholar
  133. 133.
    Saito K., Period mapping associated to a primitive form, Publ. RIMS 19 (1983) 1231–1264.MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Saito K., Extended affine root systems II (flat invariants), Publ. RIMS 26 (1990) 15–78.MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    Sato M., Miwa T., and Jimbo A., Publ. RIMS 14 (1978) 223; 15 (1979) 201, 577, 871; 16 (1980) 531. Jimbo A., Miwa T., Mori Y., Sato M., Physica 1D (1980) 80.MathSciNetCrossRefGoogle Scholar
  136. 136.
    Satake I., Flat structure of the simple elliptic singularity of type Open image in new window and Jacobi form, hep-th/9307009.Google Scholar
  137. 137.
    Shcherbak O.P., Wavefronts and reflection groups, Russ. Math. Surv. 43:3 (1988) 149–194.MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    Schlesinger L., Über eine Klasse von Differentsialsystemen beliebliger Ordnung mit festen kritischer Punkten, J. für Math. 141 (1912), 96–145.MathSciNetzbMATHGoogle Scholar
  139. 139.
    Slodowy P., Einfache Singularitaten und Einfache Algebraische Gruppen, Preprint, Regensburger Mathematische Schriften 2, Univ. Regensburg (1978).Google Scholar
  140. 140.
    Spiegelglass M., Setting fusion rings in topological Landau-Ginsburg, Phys. Lett. B274 (1992), 21–26.MathSciNetCrossRefGoogle Scholar
  141. 141.
    Takasaki K. and Takebe T., SDiff(2) Toda equation—hierarchy, tau function and symmetries, Lett. Math. Phys. 23 (1991), 205–214; Integrable hierarchies and dispersionless limi, Preprint UTMS 94-35.MathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    Takhtajan L., Modular forms as tau-functions for certain integrable reductions of the Yang-Mills equations, Preprint Univ. Colorado (March 1992).Google Scholar
  143. 143.
    Todorov A.N., Global properties of the moduli of Calabi—Yau manifolds-II (Teichmüller theory), Preprint UC Santa Cruz (December 1993); Some ideas from mirror geometry applied to the moduli space of K3, Preprint UC Santa Cruz (April 1994).Google Scholar
  144. 144.
    Tsarev S., Math. USSR Izvestija 36 (1991); Sov. Math. Dokl. 34 (1985) 534.Google Scholar
  145. 145.
    Vafa C., Mod. Phys. Lett. A4 (1989) 1169.MathSciNetCrossRefGoogle Scholar
  146. 146.
    Vafa C., Topological mirrors and quantum rings, in.zbMATHGoogle Scholar
  147. 147.
    Varchenko A.N. and Ghmutov S.V., Finite irreducible groups, generated by reflections, are monodromy groups of suitable singularities, Func. Anal. 18 (1984) 171–183.zbMATHCrossRefGoogle Scholar
  148. 148.
    Varchenko A.N. and Givental A.B., Mapping of periods and intersection form, Funct. Anal. 16 (1982) 83–93.MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    Verlinde E. and Warner N., Phys. Lett. 269B (1991) 96.MathSciNetCrossRefGoogle Scholar
  150. 150.
    Vornov A.A., Topological field theories, string backgrounds, and homotopy algebras, Preprint University of Pennsylvania (December 1993).Google Scholar
  151. 151.
    Wall C.T.C., A note on symmetry of singularities, Bull. London Math. Soc. 12 (1980) 169–175; A second note on symmetry of singularities, ibid. Bull. London Math. Soc., 347–354.MathSciNetzbMATHCrossRefGoogle Scholar
  152. 152.
    Wasow W., Asymptotic expansions for ordinary differential equations, Wiley, New York, 1965.zbMATHGoogle Scholar
  153. 153.
    Whittaker E.T., and Watson G.N., A Course of Modern Analysis, N.Y., AMS Press, 1979.zbMATHGoogle Scholar
  154. 154.
    Wirthmüller K., Root systems and Jacobi forms, Compositio Math. 82 (1992), 293–354.MathSciNetzbMATHGoogle Scholar
  155. 155.
    Witten E., Comm. Math. Phys. 117 (1988) 353; Ibid. Comm. Math. Phys., 118 (1988) 411.MathSciNetCrossRefGoogle Scholar
  156. 156.
    Witten E., On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B 340 (1990) 281–332.MathSciNetCrossRefGoogle Scholar
  157. 157.
    Witten E., Two-dimensional gravity and intersection theory on moduli space, Surv. Diff. Geom. 1 (1991) 243–210.MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    Witten E., Algebraic geometry associated with matrix models of two-dimensional gravity, Preprint IASSNS-HEP-91/74.Google Scholar
  159. 159.
    Witten E., Lectures on mirror symmetry, In:.Google Scholar
  160. 160.
    Witten E., On the Kontsevich model and other models of two dimensional gravity, Preprint IASSNS-HEP-91/24.Google Scholar
  161. 161.
    Witten E., Phases of N=2 theories in two dimensions, Nucl. Phys. B403 (1993), 159–222.MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    Yau S.-T., ed., Essays on Mirror Manifolds, International Press Co., Hong Kong, 1992.zbMATHGoogle Scholar
  163. 163.
    Yano T., Free deformation for isolated singularity, Sci. Rep. Saitama Univ. A9 (1980), 61–70.Google Scholar
  164. 164.
    Zakharov, V.E., On the Benney's equations, Physica 3D (1981), 193–202.Google Scholar
  165. 165.
    Zuber J.-B., On Dubrovin's topological field theories, Preprint SPhT 93/147.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.SISSATrieste

Personalised recommendations