Skip to main content

Analysis of adaptive finite element methods for −εU″+U′=F based on a-posteriori error estimates

  • Part I: Theory of Singular Perturbations
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 942))

Abstract

A-posteriori error estimates containing realistic bounds provide a basis for adaptive numerical methods solving differential equations. In this paper, for a singularly perturbed convection-diffusion model problem, a finite element method is analysed which is based on a technique of approximate symmetrization of the given unsymmetric problem. Realistic a-posteriori error estimates with respect to an appropriate energy-norm are presented. A series of numerical examples demonstrate that our adaptive methods detect and resolve the boundary layer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsson, O., Frank, L., van der Sluis, A. (eds.): Analytical and numerical approaches to asymptotic problems in analysis (Proc. Conf., Nijmegen, 1980). North-Holland, Amsterdam-New York-Oxford, 1981.

    Google Scholar 

  2. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the Finite Element Method. In: The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Conf. Baltimore, 1972), pp. 5–359. Academic Press, New York-London, 1972.

    Google Scholar 

  3. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element comptuations. SIAM J. Numer. Anal. 15 (1978), 736–754.

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Rheinboldt, W.C.: Analysis of optimal finite element meshes in R1. Math. Comp. 33 (1979), 435–463.

    MathSciNet  MATH  Google Scholar 

  5. Babuška, I., Rheinboldt, W.C.: A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM J. Numer. Anal 18 (1981), 565–589.

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška, I., Szymczak, W.G.: An error analysis for the finite element method applied to convection diffusion problems. Techn. Note BN-962, Inst. Physical Sc. and Techn., Univ. Maryland, College Park, March 1981.

    MATH  Google Scholar 

  7. Barrett, J.W., Morton, K.W.: Optimal finite element solutions to diffusion-convection problems in one dimension. Internat. J. Numer. Methods. Engrg. 15 (1980), 1457–1474.

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrett, J.W., Morton, K.W.: Optimal Petrov-Galerkin methods through approximate symmetrization. Numerical Analysis Report 4/80, Dept. of Math., Univ. of Reading, 1980.

    Google Scholar 

  9. Berger, A.E., Solomon, J.M., Ciment, M., Leventhal, S.H., Weinberg, B.C.: Generalized OCI schemes for boundary layer problems. Math. Comp. 35 (1980), 695–731.

    Article  MathSciNet  Google Scholar 

  10. Brandt, A.: Multi-level adaptive techniques for singular-perturbation problems. In-[15],, pp. 53–142.

    Google Scholar 

  11. Christie, I., Griffiths, D.F., Mitchell, A.R., Zienkiewicz, O.C.: Finite element methods for second order differential equations with significant first derivatives. Internat. J. Numer. Methods Engrg. 10 (1976), 1389–1396.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: The finite element method for elliptic problems. Studies in Math. and its Applications, Vol. 4. North-Holland, Amsterdam-New York-Oxford, 1978.

    Book  MATH  Google Scholar 

  13. Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform numerical methods for problems with initial and boundary layers. Boole, Dublin, 1980.

    MATH  Google Scholar 

  14. Griffiths, D.F., Lorenz, J.: An analysis of the Petrov-Galerkin finite element method. Comput. Methods Appl. Mech. Engrg. 14 (1978), 39–64.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hemker, P.W., Miller, J.J.H. (eds.): Numerical analysis of singular perturbation problems. (Proc. Conf., Nijmegen, 1978). Academic Press, London-New York-San Francisco, 1979.

    Google Scholar 

  16. Ilin, A.M.: Differencing scheme for a differential equation with a small parameter affecting the highest derivatives. Math. Notes Acad. Sci. USSR 6 (1969), 596–602.

    Article  Google Scholar 

  17. Kellogg, R.B., Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comp. 32 (1978), 1025–1039.

    Article  MathSciNet  MATH  Google Scholar 

  18. Kreiss, B., Kreiss, H.-O.: Numerical methods for singular perturbation problems. SIAM J. Numer. Anal. 18 (1981), 262–276.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lentini, M., Pereyra, V.: An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers. SIAM J. Numer. Anal. 14 (1977), 91–111.

    Article  MathSciNet  MATH  Google Scholar 

  20. Miller, J.J.H. (ed.): Boundary and interior layers—Computational and asymptotic methods. (Proc. BAIL I Conf., Trinity College, Dublin, June 1980), Boole, Dublin, 1980.

    Google Scholar 

  21. Pearson, C.E.: On a differential equation of the boundary layer type. J. Math. and Phys. 47 (1968), 134–154.

    Article  MathSciNet  MATH  Google Scholar 

  22. Reinhardt, H.-J.: A-posteriori error estimates for the finite element solution of a singularly perturbed linear ordinary differential equation. SIAM J. Numer. Anal. 18 (1981), 406–430.

    Article  MathSciNet  MATH  Google Scholar 

  23. Reinhardt, H.-J.: A-posteriori error estimates and adaptive finite element computations for singularly perturbed one space dimensional parabolic equations-In [1], pp. 213–233.

    Google Scholar 

  24. Reinhardt, H.-J.: A-posteriori error analysis and adaptive finite element methods for singularly perturbed convection-diffusion equations. Submitted to Math. Methods Appl. Sci.

    Google Scholar 

Download references

Authors

Editor information

W. Eckhaus E. M. de Jager

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Reinhardt, HJ. (1982). Analysis of adaptive finite element methods for −εU″+U′=F based on a-posteriori error estimates. In: Eckhaus, W., de Jager, E.M. (eds) Theory and Applications of Singular Perturbations. Lecture Notes in Mathematics, vol 942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0094749

Download citation

  • DOI: https://doi.org/10.1007/BFb0094749

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11584-7

  • Online ISBN: 978-3-540-39332-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics