Advertisement

Minimization of the Kullback information for some Markov processes

  • P. Cattiaux
  • C. Léonard
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1626)

Abstract

We extend previous results of the authors ([CaL1] and [Cal2]) to general Markov processes which admit a “carré du champ” operator. This yields variational characterizations for the existence of Markov processes with a given flow of time marginal laws which is the stochastic quantization problem, extending previous results obtained by P.A. Meyer and W.A. Zheng or S. Albeverio and M. Röckner in the symmetric case to nonsymmetric processes.

Keywords

Markov Process Relative Entropy Polish Space Dirichlet Form Large Deviation Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AIR] S. Albeverio and M. Röckner. Classical Dirichlet forms on topological vector spaces. Closability and a Cameron-Martin formula. J. Funct. Anal. 88, (1990), 395–436.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [ARZ] S. Albeverio, M. Röckner and T.S. Zhang. Girsanov transform for symmetric diffusions with infinite dimensional state space. Ann. Probab. 21, (1993), 961–978.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BoH] N. Bouleau and F. Hirsch. Dirichlet forms and analysis on Wiener space. Ed. De Gruyter, (1991).Google Scholar
  4. [Car] E. Carlen. Conservative diffusions. Comm. Math. Phys. 94. (1984), 293–315.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Cat] P. Cattiaux. Stochastic calculus and degenerate boundary value problems. Ann. Inst. Fourier 42. (1992), 541–624.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CaF] P. Cattiaux et M. Fradon. Entropy, reversible diffusion processes and Markov uniqueness. Preprint Orsay & Polytechnique, (1995).Google Scholar
  7. [CaG] P. Cattiaux et F. Gamboa. Large deviations and variational theorems for marginal problems. Preprint Orsay & Polytechnique, (1995).Google Scholar
  8. [CaL1] P. Cattiaux and C. Léonard. Minimization of the Kullback information of diffusion processes. Ann. Inst. Henri Poincaré, Vol. 30, (1994), 83–132. Correction. To appear in Ann. Inst. Henri Poincaré, (1995).MathSciNetzbMATHGoogle Scholar
  9. [CaL2] P. Cattiaux and C. Léonard. Large deviations and Nelson processes. Forum Math., Vol. 7, (1995), 95–115.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [CRZ] P. Cattiaux, S. Roelly and H. Zessin. Une approche Gibbsienne des diffusions Browniennes infinidimensionnelles. to appear in Prob. Th. Rel. Fields.Google Scholar
  11. [DaG] D.A. Dawson and J. Gärtner. Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics and Stoch. Rep., Vol. 20, (1987), p 247–308.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [DcG] D. Dacunha-Castelle et F. Gamboa. Maximum d’entropie et problèmes de moments. Ann. Inst. Henri Poincré 26, (1990), 567–596.zbMATHGoogle Scholar
  13. [DeM] C. Dellacherie et P.A. Meyer. Probabilités et Potentiel, Ch. XII–XVI. (1987), Hermann, Paris.zbMATHGoogle Scholar
  14. [DeS] J.D. Deuschel and D.W. Stroock. Large Deviations. Pure and Applied Mathematics, 137, (1989), Academic Press, Boston.zbMATHGoogle Scholar
  15. [DeZ] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. (1993), Jones and Bartlett Publishers.Google Scholar
  16. [Föl] H. Föllmer. Random Fields and diffusion Processes. Cours à l’Ecole d’été de Probabilités de Saint-Flour. (1988), Lecture Notes in Mathematics 1362, Springer Verlag.Google Scholar
  17. [FöW] H. Föllmer and A. Wakolbinger. Time reversal of infinite dimensional diffusion processes. Stoch. Proc. and Appl. 22, (1986), 59–78.CrossRefzbMATHGoogle Scholar
  18. [Fuk] M. Fukushima. Dirichlet forms and Markov processes. Second Ed., North-Holland, (1988).Google Scholar
  19. [GaG] F. Gamboa and E. Gassiat. Bayesian methods for ill posed problems. Preprint Orsay, (1994).Google Scholar
  20. [IkW] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes. (1989), North Holland.Google Scholar
  21. [Jac] J. Jacod. Calcul stochastique et problèmes de martingales. Lecture Notes in Mathematics 714, (1979), Springer Verlag.Google Scholar
  22. [Kun] H. Kunita. Stochastic differential equations and stochastic flow of diffeomorphisms. Ecole d’été de probabilités de Saint-Flour. Lecture Notes in Mathematics 1907, (1984), Springer-Verlag.Google Scholar
  23. [LeR] G. Leha and G. Ritter. On solutions to stochastic differential equations with discontinuous drift in Hilbert spaces. Math. Ann., Vol. 270, (1985), 109–123.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Lio] P.L. Lions. Generalized solutions of Hamilton-Jacobi equations. Research Notes in Mathematics, 69. Pitman, Boston, (1982).zbMATHGoogle Scholar
  25. [MaR] Z. Ma and M. Röckner. An introduction to the theory of (non symmetric) Dirichlet forms. Springer, (1992).Google Scholar
  26. [MeZ] P.A. Meyer et W.A. Zheng. Construction de processus de Nelson réversibles. Séminaire de Probabilités XIV, Lecture Notes in Mathematics 1123, (1985), 12–26.CrossRefzbMATHGoogle Scholar
  27. [MNS] A. Millet, D. Nualart and M. Sanz. Time reversal for infinite dimensional diffusions. Prob. Th. Rel. Fields 82, (1989), 315–347.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Sha] M.J. Sharpe. general theory of Markov processes. Academic Press, (1988).Google Scholar
  29. [ShS] T. Shiga and A. Shimizu. Infinite dimensional stochasticdifferential equations and their applications. J. Math. Kyoto Univ. 20, (1980), 395–416.zbMATHGoogle Scholar
  30. [Son] S.Q. Song. Habilitation. Univ. Paris VI, (1993).Google Scholar
  31. [Zhe] W.A. Zheng. Tightness results for laws of diffusion processes. Application to stochastic mechanics. Ann. Inst. Henri Poincaré, Vol. 21, No. 2, (1985), 103–124.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • P. Cattiaux
    • 1
    • 5
    • 2
  • C. Léonard
    • 3
    • 5
    • 4
  1. 1.Ecole PolytechniqueCMAPPalaiseau CedexFrance
  2. 2.URA CNRS 756France
  3. 3.Equipe de Modélisation Stochastique et StatistiqueUniversité de Paris-SudOrsay CedexFrance
  4. 4.URA CNRS 743France
  5. 5.Equipe ModalXUniversité de Paris XNanterre CedexFrance

Personalised recommendations