Advertisement

Une propriété des martingales pures

  • J. Azéma
  • C. Rainer
  • M. Yor
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1626)

Keywords

Continuous Martingale Nous Proposons Nous Utilisons Proposition Suivante Mouvement Brownien 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [AMY] Azéma J., Meyer P.A., Yor M. (1992): Martingales relatives, Sém. Prob. XXVI, LNM 1526, p.307–321.MathSciNetzbMATHGoogle Scholar
  2. [AR] Azéma J., Rainer C. (1994): Sur l’Equation de Structure “d[X, X] t=dt−Xt−+dXt”, Sém. Prob. XXVIII, LNM 1583, p.236–255.zbMATHGoogle Scholar
  3. [AY] Azéma J., Yor M. (1992): Sur les zéros des martingales continues, Sém. Prob. XXVI, LNM 1526, p.248–306.zbMATHGoogle Scholar
  4. [BPY] Barlow M.T., Pitman J.W., Yor M. (1980): On Walsh’s Brownian Motion, Sém. Prob. XXIII, LNM 1372, p.275–293.MathSciNetzbMATHGoogle Scholar
  5. [Da] Dambis K.E. (1965): On the decomposition of continuous martingales, Theor. Prob. Appl. 10, p.401–410.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [DuS1] Dubins L., Schwarz G. (1965): On continuous martingales, Proc. Nat. Acad. Sci. USA 53, p.913–916.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [DuS2] Dubins L., Schwarz G. (1967): On extremal martingales distributions, Proc. Fifth Berkeley Symp. 2(1), p.295–297.MathSciNetzbMATHGoogle Scholar
  8. [EM] El Karoui N., Meyer P.A. (1977): Les changements de temps en théorie générale des processus, Sém. Prob. XI, LNM 581, p.65–78.zbMATHGoogle Scholar
  9. [J] Jeulin T. (1980): Semimartingales et grossissement de filtration, LNM 833, Springer.Google Scholar
  10. [LR] Lindvall T., Rogers L.C.G. (1986): Coupling of multidimensional diffusions by reflection, Ann. Prob. 14, p. 860–872.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [ReY] Revuz D., Yor M. (1991): Continuous Martingales and Brownian Motion, Grundlehren der math. Wiss. 293, Springer.Google Scholar
  12. [RoW] Rogers L.C.G., Williams D. (1987): Diffusions, Markov Processes and Martingales, vol. 2, John Wiley and Sons.Google Scholar
  13. [SY] Stroock D.W., Yor M. (1980): On extremal solutions of martingale problems, Ann. Scient. E.N.S., 4ème série, t.13, p.95–164.MathSciNetzbMATHGoogle Scholar
  14. [Y] Yor M. (1979): Sur l’étude des martingales continues extrémales, Stochastics, vol. 2.3. p.191–196MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Azéma
    • 1
  • C. Rainer
    • 1
  • M. Yor
    • 1
  1. 1.Laboratoire de ProbabilitésParis cedex 05

Personalised recommendations