Advertisement

Projection d’une diffusion sur sa filtration lente

  • Catherine Rainer
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1626)

Keywords

Nous Allons Mouvement Brownien Premiere Partie Inverse Local Time Nous Nous Proposons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [A] Azéma J. (1985): Sur les fermés aléatoires, Sém. Prob. XIX, LNM 1123, p. 397–495, Springer Verlag.zbMATHGoogle Scholar
  2. [ARY] Azéma J., Rainer C., Yor M. (1995): Une propriété des martingales pures, dans ce volume.Google Scholar
  3. [AY] Azéma J., Yor M. (1989): Etude d’une martingale remarquable, Sém. Prob. XXIII, LN 1372, p. 88–130, Springer Verlag.zbMATHGoogle Scholar
  4. [CY] Carmona Ph., Yor M. (1991): Processus d’Ornstein-Uhlenbeck: mesure de Lévy de l’inverse du temps local en zéro (note non publiée).Google Scholar
  5. [DMaMe] Dellacherie C., Maisonneuve B., Meyer P.A. (1992): Probabilités et Potentiel, chap. XVII à XXIV, Hermann.Google Scholar
  6. [DMe] Dellacherie C., Meyer P.A. (1987): Probabilités et Potentiel, chap. XXII–XVI, Hermann.Google Scholar
  7. [Kn] Knight F.B. (1980): Characterization of Lévy measures of inverse local times of gap diffusion, Sem. on Stoch. Proc. 1980, Birkhäuser, p. 53–78.Google Scholar
  8. [KoWa] Kotani S., Watanabe S. (1981): Krein’s spectral theory of strings and generalized diffusion processus, LNM 923, “Funct. Ana. in Markov processes”, Springer Verlag.Google Scholar
  9. [M] Méléard S. (1986): Applications du calcul stochastique à l’étude de processus de Markov réguliers sur [0, 1], Stochastics 19 (1986), p.41–82.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [R] Rainer C. (1994): Fermés marqués, filtrations lentes et équations de structure, Thèse de Doctorat de l’Université Paris VI.Google Scholar
  11. [ReY] Revuz D., Yor M. (1991): Continuous Martingales and Brownian Motion, Grundlehren der math. Wiss. 293, Springer Verlag.Google Scholar
  12. [RoWi] Rogers L.C.G., Williams D. (1987): Diffusions, Markov Processes and Martingales, vol. 2, Wiley and Sons.Google Scholar
  13. [TWi] Truman A., Williams D. (1990): Generalised Arc-Sine Law and Nelson’s Stochastic Mechanics of One-Dimensional Time-Homogeneous Diffusions in: Diffusion processes and related problems in Analysis, Vol 1., Birkhäuser.Google Scholar
  14. [Wi] Williams D. (1974): Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc. (3), 28, p. 738–768.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Y1] Yor M. (1979): Sur le balayage des semimartingales continues, Sém. Prob. XIII, LNM 721, Springer Verlag. p.453–471.MathSciNetGoogle Scholar
  16. [Y2] Yor M. (1992): Some Aspects of Brownian Motion, Part 1, Some Special functionals, Lectures in Maths. ETH Zürich, Birkhäuser.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Catherine Rainer
    • 1
  1. 1.Laboratoire de ProbabilitésUniversité Paris VIParis

Personalised recommendations