Strong and weak order of time discretization schemes of stochastic differential equations

  • Yaozhong Hu
Part of the Lecture Notes in Mathematics book series (LNM, volume 1626)


Stochastic Differential Equation Polynomial Growth Weak Order Strong Order Independent Brownian Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Be] G. Ben Arous, Flots et séries de Taylor stochastiques, Prob. Th. Rel. Fields, 81 (1989), 29–77.MathSciNetCrossRefGoogle Scholar
  2. [Hu] Y.Z. Hu, Séries de Taylor stochastiques et formule de Campbell-Hausdorff, d’après Ben Arous, Sem. Prob. XXVI, Lect. notes in Math. 1526, Springer, 1992, 587–594.CrossRefGoogle Scholar
  3. [HW] Y.Z. Hu and S. Watanabe, Donsker’s delta functions and approximation of heat kernels by time discretization method, preprint, 1995.Google Scholar
  4. [KP] P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations, Springer-Verlag, 1992.Google Scholar
  5. [Me] P. A. Meyer, Sur deux estimations d’intégrales multiples, Sem. Prob. XXV, Lecture Notes in Mathematics 1458, Springer 1991, 425–426.CrossRefGoogle Scholar
  6. [Øk] B. Øksendal, Stochastic Differential Equations, Springer, 1985.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Yaozhong Hu

There are no affiliations available

Personalised recommendations