Advertisement

Cohomologie de Bismut-Nualart-Pardoux et cohomologie de Hochschild entiere

  • R. Léandre
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1626)

Keywords

Nous Avons Loop Space Elliptic Genus Equivariant Cohomology Free Loop Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [Ar.M] Airault H., Malliavin P: Quasi sure analysis. Publication Université Paris VI.Google Scholar
  2. [Ar.Mi] Arai A., Mitoma I.: De Rham-Hodge-Kodaira decomposition in infinite dimension. Math. Ann. 291 (1991), 51–73.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [At] Atiyah M.: Circular symmetry and stationary phase approximation. pp. 43–59. Colloque en l’honneur de L.Schwartz. Astérisque 131 (1985).Google Scholar
  4. [B.L] Ben Arous G., Léandre: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II): P.T.R.F. 90 (1991), 377–402.MathSciNetzbMATHGoogle Scholar
  5. [B.V.] Berline N., Vergne, M.: Zéros d’un champ de vecteurs et classes caractéristiques équivariantes. Duke Math. Jour. 50 (1983), 539–548.CrossRefzbMATHGoogle Scholar
  6. [Bi1] Bismut J.M.: Large deviations and the Malliavin Calculus. Progress in Math. 45. Birkhaüser. (1984).Google Scholar
  7. [Bi2] Bismut J.M.: Index theorem and equivariant cohomology on the loop space. C.M.P. 98 (1985), 213–237.MathSciNetzbMATHGoogle Scholar
  8. [Bi3] Bismut J.M.: Localisation formulas, superconnections and the index theorem for families. C.M.P. 103 (1986), 127–166.zbMATHGoogle Scholar
  9. [Ch] Chen K.T.: Iterated path integrals of differential forms and loop space homology. Ann. Math. 97 (1983), 213–237.Google Scholar
  10. [Co] Connes A.: Entire cyclic cohomology of Banach algebras and characters of Θ-summable Fredholm modules. K-theory 1 (1988), 519–548.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Dr.R] Driver B., Röckner M.: Construction of diffusion on path and loop spaces of compact riemannian manifold. C.R.A.S. 315. Série I. (1992), 603–608.MathSciNetzbMATHGoogle Scholar
  12. [El1] Elworthy K.D.: Stochastic differential equations on manifolds. L.M.S. Lectures Notes Serie 20. Cambridge University Press (1982).Google Scholar
  13. [El2] Elworthy K.D.: Geometric Aspects of diffusions on manifolds. pp 277–427. In Ecole d’été de Saint-Flour 1987. P.L. Hennequin édit. Lecture Notes in Math. 1362. Springer (1989).Google Scholar
  14. [E.L] Emery M., Léandre R.: Sur une formule de Bismut. pp. 448–452. Séminaire de Probabilités XXIV. Lecture Notes in Maths. 1426. Springer (1990).Google Scholar
  15. [F.M] Fang S., Malliavin P.: Stochastic Calculus on Riemannian manifold. Preprint.Google Scholar
  16. [Ge1] Getzler E.: Dirichlet form on a loop space. Bull. Sciences. Math. 2. 113 (1989), 157–174.MathSciNetzbMATHGoogle Scholar
  17. [Ge2] Getzler E.: Cyclic homology and the path integral of the Dirac operator. Preprint.Google Scholar
  18. [G.J.P] Getzler E., Jones, J.D.S. Petrack S.: Differential forms on a loop space and the cyclic bar complex. Topology 30 (1991), 339–373.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Gi] Gilkey P.B.: Invariance theory, the heat-equation and the Atiyah-Singer theorem. Math. Lect. Series. 11. Publish and Perish.Google Scholar
  20. [Gr] Gross L.: Potential theory on Hilbert space. J.F.A. 1 (1967), 123–181.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [H.K] Hoegh-Krohn R.: Relativistic quantum statistical mechanics in 2 dimensional space time. C.M.P. 38 (1974), 195–224.MathSciNetGoogle Scholar
  22. [I.W1] Ikeda N., Watanabe S.: Stochastic differential equations and diffusion processes. North-Holland (1981).Google Scholar
  23. [J.L1] Jones J., Léandre R.: L p Chen forms over loop spaces. pp 104–162. In Stochastic Analysis. M.Barlow. N.Bingham edit. Cambridge University Press (1991).Google Scholar
  24. [J.L2] Jones J., Léandre R.: A stochastic approach to the Dirac operator over the free loop space. In preparation.Google Scholar
  25. [J.P] Jones J., Petrack S.: The fixed point theorem in equivariant cohomology. Preprint.Google Scholar
  26. [K1] Kusuoka S.: De Rham cohomology of Wiener-Riemannian manifolds, Preprint.Google Scholar
  27. [K2] Kusuoka S.: More recent theory of Malliavin Calculus. Sugaku, 5.2. (1992), 155–173.MathSciNetGoogle Scholar
  28. [L1] Léandre R.: Applications quantitatives et qualitatives du calcul de Malliavin. pp 109–133. Proc. Col. Franco-Japonais. M. Métivier. S. Watanabe édit. Lectures Note Math. 1322. Springer. (1988). English translation. pp 173–197. Geometry of Random motion. R. Durrett. M. Pinsky edit. Contemporary Math. 73. (1988).Google Scholar
  29. [L2] Léandre R.: Integration by parts formulas and rotationally invariant Sobolev Calculus on free loop spaces. In infinite dimensional problems in physics. XXVIII winter school of theoretical physics. Gielerak R. Borowiec A. edit. Journal of Geometry and Physics. 11 (1993), 517–528.Google Scholar
  30. [L3] Léandre R.: Invariant Sobolev Calculus on the free loop space. Preprint.Google Scholar
  31. [L4] Léandre R.: Loop space of a developable orbifold. To be published in the proceedings of the symposium over the brownian sheet. E.Merzbach. J.P.Fouque edts.Google Scholar
  32. [L5] Léandre R.: Brownian motion over a Kähler manifold and elliptic genera of level N. To be published in Stochastic analysis and Applications in Physics. L.Streit edt.Google Scholar
  33. [L.R] Léandre R., Roan S.S.: A stochastic approach to the Euler-Poincaré number of the loop space of a developable orbifold. To be published In Journal of Geometry and Physics.Google Scholar
  34. [Nu] Nualart D.: Non causal stochastic integral and calculus. p80–129. In stochastic Analysis. A. Korezlioglu. S. Ustunel edits. Lectures Notes. Math 1316. (1988).Google Scholar
  35. [N.P] Nualart D., Pardoux, E: Stochastics calculus with anticipating integrands. Pro. The. Rela. Fields. 78 (1988), 535–581.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [Ra] Ramer R.: On the de Rham complex of finite codimensional forms on infinite dimensional manifolds. Thesis. Warwick University. 1974.Google Scholar
  37. [Sh] Shigekawa I.: De Rham-Hodge-Kodaira’s decomposition on an abstract Wiener space. J. Math. Kyoto. Uni. 26 (1986), 191–202.MathSciNetzbMATHGoogle Scholar
  38. [Sm] Smolyanov O.G.: De Rham currents and Stoke’s formula in a Hilbert space. Soviet Math. Dok. 33. 3 (1986), 140–144.MathSciNetzbMATHGoogle Scholar
  39. [Sm.W] Smolyanov O.G., v. Weizsäcker H.: Differentiable families of measures. Jour. Funct. Ana. 118. 2. (1993), 454–474.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [T] Taubes C.: S 1 actions and elliptic genera. C.M.P. 122 (1989), 455–526.MathSciNetzbMATHGoogle Scholar
  41. [Ug] Uglanov Y: Surface integrals and differential equations on an infinite dimensional space. Sov. Math. Dok. 20.4. (1979), 917–920.MathSciNetzbMATHGoogle Scholar
  42. [Wa] Watanabe S.: Stochastic analysis and its application. Sugaku. 5. 1 (1992), 51–71.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • R. Léandre
    • 1
  1. 1.I.R.M.A. Département de mathématiquesUniversité Louis PasteurStrasbourgFrance

Personalised recommendations