Advertisement

The asymptotic composition of supercritical, multi-type branching populations

  • Peter Jagers
  • Olle Nerman
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1626)

Abstract

The life, past and future are described of a typical individual in an old, non-extinct branching population, where individuals may give birth as a point process and have types in an abstract type space. The type, age and birth-rank distributions of the typical individual are explicitly given, as well as the Markov renewal type process that describes her history. The convergence of expected and actual compositions towards stable, asymptotic compositions is proved.

Keywords

Typical Individual Transition Kernel Life Career Life Space Population Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldous, D. (1991). Asymptotic fringe distributions for general families of random trees. Ann. Appl. Prob. 1 228–266.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chauvin, B. (1986). Arbres et processus de Bellman-Harris. Ann. Inst. H. Poincaré 22, 199–207.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cohn, H. and Jagers, P. (1994). General branching processes in varying environment. Ann. Appl. Prob. 4 184–193.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Euler, L. Recherches génerales sur la mortalité et la multiplication du genre humain. In: Histoire de l’Académie Royale des Sciences et Belles-Lettres 1760 (Berlin 1767), 144–164.Google Scholar
  5. 5.
    Jagers, P. (1975). Branching Processes with Biological Applications. J. Wiley & Sons, Chichester etc..zbMATHGoogle Scholar
  6. 6.
    Jagers, P. (1989). General branching processes as Markov fields. Stoch. Proc. Appl. 32 183–242.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jagers, P. (1991). The growth and stabilization of populations. Statist. Sci. 6 269–283.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jagers, P. (1992) Stabilities and instabilities in population dynamics. J. Appl. Prob. 29.Google Scholar
  9. 9.
    Jagers, P. and Nerman, O. (1984) The growth and composition of branching populations. Adv. Appl. Prob. 16 221–259.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nerman, O. (1984) The Growth and Composition of Supercritical Branching Populations on General Type Spaces. Dep. Mathematics, Chalmers U. Tech. and Gothenburg U. 1984–4.Google Scholar
  11. 11.
    Nerman, O. and Jagers, P. (1984) The stable doubly infinite pedigree process of supercritical branching populations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 64 445–460.CrossRefzbMATHGoogle Scholar
  12. 12.
    Neveu, J. (1986) Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré 22 199–207.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Niemi, S. and Nummelin, E. (1986) On non-singular renewal kernels with an application to a semigroup of transition kernels. Stoch. Proc. Appl. 22 177–202.CrossRefzbMATHGoogle Scholar
  14. 14.
    Nummelin, E. (1984) General Ireducible Markov Chains and Non-negative Operators. Cambridge University Press, Cambridge.CrossRefzbMATHGoogle Scholar
  15. 15.
    Shurenkov, V. M. (1984) On the theory of Markov renewal. Theory Prob. Appl. 29 247–265.CrossRefzbMATHGoogle Scholar
  16. 16.
    Shurenkov, V. M. (1989) Ergodicheskie protsessy Markova. Nauka, Moscow.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Peter Jagers
    • 1
  • Olle Nerman
    • 1
  1. 1.Department of MathematicsChalmers University of Technology and Gothenburg UniversityGöteborgSweden

Personalised recommendations