Advertisement

Remarques sur l’intégrale de Riemann généralisée

  • S. D. Chatterji
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1626)

Keywords

Modern Integration Suite Monotone Chapitres Versus Nous Dirons Etant Donnee 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    R.-G. Bartle “A general bilinear vector integral”, Studia Math. 15, 337–352 (1956).MathSciNetzbMATHGoogle Scholar
  2. [2]
    R.O. Davies et Z. Schuss “A proof that Henstock’s integral includes Lebesgue’s”, J. London Math. Soc. (2) 2, 561–562 (1970).MathSciNetzbMATHGoogle Scholar
  3. [3]
    C. Dellacherie et P.-A. Meyer “Probabilités et Potentiel” Chapitres V à VIII. Hermann, Paris (1980).zbMATHGoogle Scholar
  4. [4]
    D.H. Fremlin (i) (with J. Mendoza) “On the integration of vector-valued functions”, Illinois J. Math. 38, 127–147 (1994) (ii) “The Henstock and McShane integrals of vector-valued functions”, Illinois J. Math. 38, 471–479 (1994).MathSciNetzbMATHGoogle Scholar
  5. [5]
    R.A. Gordon “The McShane integral of Banach-valued functions”, Ilinois J. Math. 34, 557–567 (1990).MathSciNetzbMATHGoogle Scholar
  6. [6]
    R. Henstock “The general theory of integration”. Clarendon Press, Oxford (1991).zbMATHGoogle Scholar
  7. [7]
    G. Letta “Martingales et intégration stochastique”. Scuola Normale Superiore, Pisa (1984).zbMATHGoogle Scholar
  8. [8]
    M. Métivier et J. Pellaumail “Stochastic integration”. Academic Press, New York (1980).zbMATHGoogle Scholar
  9. [9]
    R.M. McLeod “The generalized Riemann integral”. The Mathematical Association of America (1980).Google Scholar
  10. [10]
    E.J. McShane (i) (with T.A. Botts) “A modified Riemann-Stieltjes integral”, Duke Math. J. 19, 293–302 (1952) (ii) “A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals”, Memoirs of the Amer-Math. Soc. Nov. 88 (1969). (iii) “A unified theory of integration”, Amer. Math. Monthly 80, 349–359 (1973) (iv) “Stochastic calculus and stochastic models”. Academic Press, New York (1974) (v) “Unified integration”. Academic Press, New York (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Neveu “Bases mathématiques du calcul des probabilités”. Masson, Paris (1964).zbMATHGoogle Scholar
  12. [12]
    I.N. Pesin “Classical and modern integration theories” (translated and edited by S. Kotz). Academic Press, New York (1970).zbMATHGoogle Scholar
  13. [13]
    W.F. Pfeffer “The Riemann approach to integration”. Cambridge University Press (1993).Google Scholar
  14. [14]
    P. Protter “Stochastic integration and differential equations”. Springer-Verlag, Berlin (1990).CrossRefzbMATHGoogle Scholar
  15. [15]
    S. Saks “Theory of the integral”. Dover, New York (1964)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • S. D. Chatterji
    • 1
  1. 1.Départment de MathématiquesEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations