Advertisement

Non linear hyperbolic fields and waves

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1640)

Keywords

Shock Wave Hyperbolic System Weak Discontinuity Nonlinear Electrodynamic Relativistic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 0.
    E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge University Press, Cambridge, New York (1st ed. 1990; 2nd revised ed. 1992).zbMATHGoogle Scholar
  2. 1.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience Publ., New York, London, Sydney (1962).zbMATHGoogle Scholar
  3. 2.
    A. Jeffrey and T. Taniuti, Non-linear Wave Propagation, with Applications to Physics and Magnetohydrodynamics, Academic Press, New York, London (1964).zbMATHGoogle Scholar
  4. 3.
    A. Jeffrey, Quasilinear hyperbolic systems and waves, Pitman Publishing, London, San Francisco, Melbourne (1976).zbMATHGoogle Scholar
  5. 4.
    A. Jeffrey, Lectures on nonlinear wave propagation, in Wave Propagation, Corso CIME, Bressanone, 1980, Ed. by G. Ferrarese, Liguori, Napoli (1982).Google Scholar
  6. 5.
    C. Dafermos, Hyperbolic systems of conservation laws, in Systems of nonlinear partial differential equations. Ed. by J. Ball. NATO ASI series, C, No 111, Reidel Publ. Co. (1983) pp. 25–70.Google Scholar
  7. 6.
    J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, New York, Heidelberg, Berlin (1983).zbMATHCrossRefGoogle Scholar
  8. 7.
    D. Serre, Systèmes de lois de conservation, I & II, Diderot, Paris (1996).Google Scholar
  9. 8.
    B. Sévennec, Géométrie des systèmes hyperboliques de lois de conservation, Mémoire 56, Soc. Math. Fr. (1994).Google Scholar
  10. 9.
    P. D. Lax, The multiplicities of eigenvalues, Bull. Amer. Math. Soc., 6 (1982) p.213.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 10.
    S. Friedland, J. W. Robbin and J. H. Sylvester, On the crossing rule, Comm. Pure Appl. Math., 37 (1984) p.19.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 11.
    J. Hadamard, Leçons sur la propagation des ondes, Hermann, Paris (1903).zbMATHGoogle Scholar
  13. 12.
    C. Reid, Courant in Göttingen and New York. The Story of an Improbable Mathematician, Springer-Verlag, New York (1976) p.279.zbMATHGoogle Scholar
  14. 13.
    R. Courant and P. D. Lax, The propagation of discontinuities in wave motion, Proc. Natl. Acad. Sci. U.S., 42 (1956) pp.872–76.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 14.
    C. Cattaneo, Elementi di teoria della propagazione ondosa. Lezioni raccolte da S. Pluchino. Quaderni dell’Unione Matematica Italiana 20, Pitagora Editrice, Bologna (1981).zbMATHGoogle Scholar
  16. 15.
    A. Jeffrey, The development of jump discontinuities in nonlinear hyperbolic systems of equations in two independent variables, Arch. Ratl. Mech. Analys., 14 (1963) pp.27–37.MathSciNetzbMATHGoogle Scholar
  17. 16.
    G. Boillat and T. Ruggeri, On the evolution law of weak discontinuities for hyperbolic quasi-linear systems, Wave Motion, 1 (1979) pp.149–152.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 17.
    P. D. Lax, Asymptotic solutions of oscillatory initial value problem, Duke. Math. Journ., 24 (1957) pp.627–646.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 18.
    D. Ludwig, Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math., 13 (1960) pp.473–508.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 19.
    Y. Choquet-Bruhat, Ondes asymptotiques pour un système d’équations aux dérivées partielles non linéaires, J. Maths. pure appl., 48 (1969) pp.117–158; Ondes Asymptotiques, in Wave Propagation, Corso CIME. Bressanone, 1980 (op. cit.) pp.99–165.MathSciNetzbMATHGoogle Scholar
  21. 20.
    A. M. Anile and A. Greco, Asymptotic waves and critical time in general relativistic magnetohydrodynamics, Ann. Inst. Henri Poincaré, XXIX (1978) p.257.MathSciNetzbMATHGoogle Scholar
  22. 21.
    J. K. Hunter and J. B. Keller, Weakly nonlinear high frequency waves, Comm. Pure Appl. Math., XXXVI (1983) pp.547–569.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 22.
    G. Boillat, Ondes asymptotiques non linéaires, Ann. Mat. pura ed appl., CXI (1976) pp.31–44.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 23.
    D. Serre, Oscillations non-linéaires hyperboliques de grande amplitude: DIM ≥2 in Nonlinear variational problems and partial differential equations. Proc. of the 3rd conf., Isola d’Elba, 1990. Ed. by A. Marino et al., Pitman Res. Notes Math., Ser.320 (1995) pp.245–294.Google Scholar
  25. 24.
    R. Courant and K. O. Friedrichs, Supersonic flow and shock waves, Interscience Publ., New York (1948).zbMATHGoogle Scholar
  26. 25.
    P. D. Lax, The initial value problem for nonlinear hyperbolic equations in two independent variables, Ann. Math. Studies, Princeton, 33 (1954) pp.211–29.MathSciNetzbMATHGoogle Scholar
  27. 26.
    P. D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math., 10 (1957) pp.537–566.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 27.
    G. Boillat, Sur la croissance des ondes simples et l’instabilité de chocs caractéristiques des systèmes hyperboliques avec application à la discontinuité de contact d’un fluide, C. R. Acad. Sci. Paris, 284 A (1977) pp.1481–1484.MathSciNetzbMATHGoogle Scholar
  29. 28.
    G. Boillat, On nonlinear plane waves, in 8th Internat. Conf. on Waves and Stability in Continuous Media, Plaermo, 1995. Ed. by A.M. Greco and S. Rionero (to appear in a special issue of Rend. Circ. Mat. Palermo).Google Scholar
  30. 29.
    G. Velo and D. Zwanziger, Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential, Phys. Rev., 186 (1969) pp.1337–1341.CrossRefGoogle Scholar
  31. 30.
    G. Boillat, Exact plane wave solution of Born-Infeld electrodynamics, Lett. N. Cim., serie 2, 4 (1972) pp.274–276.CrossRefGoogle Scholar
  32. 31.
    G. Boillat, Covariant disturbances and exceptional waves, J. Math. Phys., 14 (1973) pp.973–976.zbMATHCrossRefGoogle Scholar
  33. 32.
    H. C. Tze, Born duality and strings in hadrodynamics and electrodynamics, N. Cim., 22 A (1974) pp.507–526.MathSciNetCrossRefGoogle Scholar
  34. 33.
    H. Freistühler, Linear degeneracy and shock waves, Math. Z., 207 (1991) pp.583–596.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 34.
    G. Boillat, Chocs caractéristiques, C.R. Acad. Sci. Paris, 274 A (1972) pp.1018–1021.MathSciNetzbMATHGoogle Scholar
  36. 35.
    G. Boillat and A. Muracchini, Chocs caractéristiques de croisement, C.R. Acad. Sci. Paris, 310 I (1990) pp.229–232.MathSciNetzbMATHGoogle Scholar
  37. 36.
    G. Boillat, Le cône critique et le champ scalaire, C.R. Acad. Sci. Paris, 260 (1965) pp.2427–2429.MathSciNetzbMATHGoogle Scholar
  38. 37.
    W. Heisenberg and H. Euler, Zeitschrift für Physik, 98 (1936) p. 714.CrossRefGoogle Scholar
  39. 38.
    G. B. Witham, Linear and Nonlinear Waves, John Wiley & Sons, New York, London, Sydney, Toronto (1974).Google Scholar
  40. 39.
    Th. von Kármán, Compressibility effects in aerodynamics, J. Aeron. Sci., 8 (1941) pp. 337–356.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 40.
    E. Carafoli, High Speed Aerodynamics, Pergamon Press (1956).Google Scholar
  42. 41.
    Y. Choquet-Bruhat, Théorèmes d’existence globaux pour des fluides ultrarelativistes, C.R. Acad. Sci. Paris, 319 I (1994) pp. 1337–1342.MathSciNetGoogle Scholar
  43. 42.
    T. Ruggeri, A. Muracchini and L. Seccia, Shock waves and second sound in a rigid heat conductor: a critical temperature for NaF and Bi, Phys. Rev. Lett., 64 (1990) p. 2640; Continuum approach to phonon gas and shape of second sound via shock waves theory, N. Cim., 16 D (1994) pp. 15–44.CrossRefGoogle Scholar
  44. 43.
    A. Donato and T. Ruggeri, Onde di discontinuità e condizioni di eccezionalità per materiali ferromagnetici, Rend. Accad. Naz. Lincei, Serie VIII, LIII (1972) pp. 289–294.Google Scholar
  45. 44.
    G. Boillat, La propagation des ondes, Gauthier-Villars, Paris.Google Scholar
  46. 45.
    T. Ruggeri, Sulla propagazione di onde elettromagnetiche di discontinuità in mezzi non lineari, Ist. Lombardo (Rend. Sc.) A 107 (1973) pp. 283–297.Google Scholar
  47. 46.
    T. Taniuti, On wave propagation in non-linear fields, Suppl. Progr. Theor. Phys., No9 (1959) pp. 69–128.zbMATHCrossRefGoogle Scholar
  48. 47.
    M. Born, Proc. Roy. Soc. London, Ser. A, 143 (1933) p. 410.CrossRefGoogle Scholar
  49. 48.
    W. Heisenberg, Zs. f. Phys., 133 (1952) p. 79; 126 (1949) p. 519; 113 (1939) p. 61.Google Scholar
  50. 49.
    B. M. Barbishov and N. A. Chernikov, Solution of the two plane wave scattering problem in a nonlinear scalar field theory of the Born-Infeld type, Sov. Phys. J. E. T. P., 24 (1966) pp. 437–442.Google Scholar
  51. 50.
    I. Imai, Progr. Theor. Phys., 2 (1947) p. 97.Google Scholar
  52. 51.
    T. Taniuti, On the Heisenberg’s non-linear meson equation, Progr. Theor. Phys., 14 (1955) pp. 408–409.MathSciNetCrossRefGoogle Scholar
  53. 52.
    A. Greco, On the exceptional waves in relativistic magnetohydrodynamics, Rend. Accad. Naz. Lincei, serie VIII, LII (1972) pp. 507–512.MathSciNetzbMATHGoogle Scholar
  54. 53.
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. London, A 144 (1934) pp. 425–451; M. Born, Structure atomique de la matière, Coll. U. Armand Colin, Paris (1971); Atomic Physics, Blackie and Son, Ltd., London.zbMATHCrossRefGoogle Scholar
  55. 54.
    J. Plebański, Lectures on non-linear electrodynamics, given at the Niels Bohr Institute and NORDITA in 1968, NORDITA, Copenhagen (1970). I. Bialynicki-Birula, Nonlinear Electrodynamics: variations on a theme by Born and Infeld in Quantum Theory and Particles and Fields. B. Jancewicz and J. Lukierski eds. World Scientific, Singapore (1983).Google Scholar
  56. 55.
    J. Naas and H.L. Schmid, Mathematisches Wörterbuch mit Einbeziehung der theoretischen Physik, Akademie Verlag, Berlin und B.G. Teubner, Stuttgart (1961).Google Scholar
  57. 56.
    A. Einstein, H. Born and M. Born, Briefwechsel, 1916–1955, kommentiert von Max Born. Geleitwort von Bertrand Russell, Vorwort von Werner Heisenberg. Nymphenburger Verlagshandlung, München, 1969; H. and M. Born, Der Luxus des Gewissens, Ibid., 1969.zbMATHGoogle Scholar
  58. 57.
    G. Boillat, Nonlinear electrodynamics. Lagrangians and equations of motion, J. Math. Phys., 11 (1970) pp. 941–951; Born-Infeld particle; small scale phenomena, Lett. N. Cim., 4 (1970) pp. 773–778; Exact plane-wave solution of Born-Infeld electrodynamics, Ibid., 4 (1972) pp. 274–276; Shock relations in nonlinear electrodynamics, Phys. Lett., 40 A (1972) pp. 9–10.CrossRefGoogle Scholar
  59. 58.
    A. Strumia, Einstein equations, relativistic strings and Born-Infeld electrodynamics, N. Cim., 110 B (1995) pp. 1497–1504.MathSciNetCrossRefGoogle Scholar
  60. 59.
    J. H. Olsen and A. S. Shapiro, Large-amplitude unsteady flow in liquid-filled elastic tubes, J. Fluid Mech., 29 (1967) pp. 513–538.CrossRefGoogle Scholar
  61. 60.
    W. A. Green, The growth of plane discontinuities propagating into a homogeneously deformed elastic material, Arch. Ratl. Mech. Analys., 16 (1964) pp. 79–88.MathSciNetzbMATHCrossRefGoogle Scholar
  62. 61.
    N. H. Scott, Acceleration waves in incompressible elastic solids, Quart. J. Mec. Appl. Math., 29 (1976) pp. 259–310.zbMATHGoogle Scholar
  63. 62.
    A. Jeffrey and M. Teymur, Formation of shock waves in hyperelastic solids, Acta Mech., 20 (1974) pp. 133–149.MathSciNetzbMATHCrossRefGoogle Scholar
  64. 63.
    L. Lustman, A note on nonbreaking waves in hyperelastic materials, Stud. Appl. Math., 63 (1980) pp. 147–154.MathSciNetzbMATHCrossRefGoogle Scholar
  65. 64.
    A. Donato, Legge di evoluzione delle discontinuità e determinazione di una classe di potenziali elastici compatibile con la propagazione di one eccezionali in un mezzo continuo sottoposto a particolari deformazioni finite, ZAMP, 28 (1977) pp. 1059–1066.zbMATHCrossRefGoogle Scholar
  66. 65.
    G. Boillat and T. Ruggeri, Su alcune classi di potenziali termodinamici come conseguenza dell’esistenza di particolari onde di discontinuità nella meccanica dei continui con deformazioni finite, Rend. Sem. Mat. Univ. Padova, 51 (1974) pp. 293–304.MathSciNetzbMATHGoogle Scholar
  67. 66.
    G. Boillat and S. Pluchino, Onde eccezionali in mezzi iperelastici con deformazioni finite piane, ZAMP, 35 (1984) pp. 363–372.zbMATHCrossRefGoogle Scholar
  68. 67.
    G. Grioli, On the thermodynamic potential for continuums with reversible transformations—some possible types, Meccanica, 1 (1966) pp. 15–20.zbMATHCrossRefGoogle Scholar
  69. 68.
    C. Tolotti, Deformazioni elastiche finite: onde ordinarie di discontinuità e casi tipici di solidi elastici isotropi, Rend. Mat. Appl., serie V, 4 (1943) pp. 34–59.MathSciNetzbMATHGoogle Scholar
  70. 69.
    G. Boillat, Le champ scalaire de Monge-Ampère, Det Kgl. Norske Vid. Selsk. Forh., 41 (1968) pp. 78–81.MathSciNetzbMATHGoogle Scholar
  71. 70.
    G. Valiron, Cours d’analyse mathématique. Equations fonctionnelles. Applications, Masson, Paris (1950).Google Scholar
  72. 71.
    G. Boillat, Sur l’équation générale de Monge-Ampère à plusieurs variables, C. R. Acad. Sci. Paris, 313 I (1991) pp. 805–808.MathSciNetzbMATHGoogle Scholar
  73. 72.
    T. Ruggeri, Su una naturale estensione a tre variabili dell’equazione di Monge-Ampère, Accad. Naz. dei Lincei, LV (1973) pp. 445–449.MathSciNetzbMATHGoogle Scholar
  74. 73.
    A. Donato, U. Ramgulam and C. Rogers, The 3+1 dimensional Monge-Ampère equation in discontinuity wave theory: application of a reciprocal transformation, Meccanica, 27 (1992) pp. 257–262.zbMATHCrossRefGoogle Scholar
  75. 74.
    G. Boillat, Sur l’équation générale de Monge-Ampère d’ordre supérieur, C. R. Acad. Sci. Paris, 315 I (1992) pp. 1211–1214.MathSciNetzbMATHGoogle Scholar
  76. 75.
    A. Donato and F. Oliveri, Linearization of completely exceptional second order hyperbolic conservative equations, Applicable Analys., 57 (1995) pp. 35–45.MathSciNetzbMATHCrossRefGoogle Scholar
  77. 76.
    G. Ruppeiner, Riemannian geometry of thermodynamics and critical phenomena, in Advances in Thermodynamics. Ed. by S. Sieniutycz & P. Salomon, Vol. 3, Taylor & Francis, New York (1990) pp. 129–159.Google Scholar
  78. 77.
    A. Donato and G. Valenti, Exceptionality criterion and linearization procedure for a third order nonlinear partial differential equation, J. Math. Analys. Appls., 186 (1994) pp. 375–382.MathSciNetzbMATHCrossRefGoogle Scholar
  79. 78.
    G. Boillat, Sur la forme générale du système de Monge-Ampère, Conf. at the CIRAM, Università di Bologna, October 1995 (to appear).Google Scholar
  80. 79.
    K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7 (1954) pp. 345–392.MathSciNetzbMATHCrossRefGoogle Scholar
  81. 80.
    A. Fisher and D. P. Marsden, The Einstein evolution equations as a first order quasi-linear symmetric hyperbolic system, Comm. Math. Phys., 28 (1972) pp. 1–38.MathSciNetCrossRefGoogle Scholar
  82. 81.
    T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ratl. Mech. Analys., 58 (1975) pp. 181–205; Quasi-linear equations of evolution of hyperbolic type with applications to partial differential equations, Lect. Notes in Math., No448, Springer Verlag, New York, Berlin (1975).MathSciNetzbMATHCrossRefGoogle Scholar
  83. 82.
    S. K. Godunov, An interesting class of quasilinear systems, Sov. Math. Doklady, 2 (1961) pp. 947–949.zbMATHGoogle Scholar
  84. 83.
    K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971) pp. 1686–1688.MathSciNetzbMATHCrossRefGoogle Scholar
  85. 84.
    B. L. van der Waerden, Euler als Schöpfer der Kontinuums-Mechanik, Naturwissenschaften, 71 (1984) pp. 414–417.CrossRefGoogle Scholar
  86. 85.
    Schweizer Lexikon 91 in sechs Bänden, Verlag Schweizer Lexikon, Luzern (1992–93) (Euler).Google Scholar
  87. 86.
    S. K. Godunov, The problem of a generalized solution in the theory of quasilinear equations and in gas dynamics, Russian Math. Surveys, 17 (1962) pp. 145–156.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 87.
    P. Carbonaro, Exceptional relativistic gas dynamics, Phys. Lett. A, 129 (1988) pp. 372–376.MathSciNetCrossRefGoogle Scholar
  89. 88.
    A. Greco, Discontinuités des rayons et stricte exceptionnalité en magnéto-hydrodynamique relativiste, Ann. Inst. Henri Poincaré, XII (1975) pp. 217–227.zbMATHGoogle Scholar
  90. 89.
    A. H. Taub, Relativistic Rankine-Hugoniot equations, Phys. Rev., 74 (1948) pp. 328–334.MathSciNetzbMATHCrossRefGoogle Scholar
  91. 90.
    A. H. Taub, General relativistic shock waves in fluids for which pressure equals energy density, Comm. math. Phys., 29 (1973) pp. 79–88.MathSciNetzbMATHCrossRefGoogle Scholar
  92. 91.
    G. Boillat, A moi compte deux mots. A spelling remark, Math. Intelligencer, 4 (1982) p. 2.CrossRefGoogle Scholar
  93. 92.
    T. Ruggeri and A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems, Ann. Inst. Henri Poincaré, A XXXIV (1981) pp. 65–84.MathSciNetzbMATHGoogle Scholar
  94. 93.
    G. Boillat, Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris, 278 A (1974) pp. 909–912.MathSciNetzbMATHGoogle Scholar
  95. 94.
    I-Shih Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Ratl. Mech. Analys., 46 (1972) pp. 131–148.MathSciNetzbMATHGoogle Scholar
  96. 95.
    A. Strumia, Main field and symmetric hyperbolic form of the Dirac equation, Lett. N. Cim., 36 (1983) pp. 609–613.MathSciNetCrossRefGoogle Scholar
  97. 96.
    G. Boillat and T. Ruggeri, Symmetric form of nonlinear mechanics equations and entropy growth across a shock, Acta Mech., 35 (1980) pp. 271–274.zbMATHCrossRefGoogle Scholar
  98. 97.
    V. I. Kondaurov, Conservation laws and symmetrization of the equations of the nonlinear theory of elasticity, Sov. Phys. Dokl., 26 (1981) pp. 234–236.zbMATHGoogle Scholar
  99. 98.
    C. Truesdell, Six lectures on modern natural philosophy, Springer-Verlag, New York (1966) p. 72.zbMATHCrossRefGoogle Scholar
  100. 99.
    I. Müller, The coldness, a universal function in thermoelastic bodies, Arch. Ratl. Mech. Analys., 41 (1971) pp. 319–332.MathSciNetzbMATHGoogle Scholar
  101. 100.
    I. Müller and T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, Vol. 37, Springer-Verlag, New York, Berlin (1993).zbMATHGoogle Scholar
  102. 101.
    K. O. Friedrichs, On the laws of relativistic electro-magneto-fluid dynamics, Comm. Pure Appl. Math., 27 (1974) pp. 749–808; Conservation equations and the law of motion in classical physics, Ibid., 31 (1978) pp. 123–131.MathSciNetzbMATHCrossRefGoogle Scholar
  103. 102.
    G. Boillat, Chocs dans les champs qui dérivent d’un principe variationnel: équation de Hamilton-Jacobi pour la fonction génératrice, C. R. Acad. Sci. Paris 283 A (1976) pp. 539–542.MathSciNetzbMATHGoogle Scholar
  104. 103.
    Encyclopaedia of Mathematics, Kluwer Academic Publ., Dordrecht, Boston, London (1988–94).Google Scholar
  105. 104.
    P. Roman, Theory of elementary particles, North-Holland (1960).Google Scholar
  106. 105.
    L. L. Foldy, Relativistic wave equations, in D. R. Bates, Quantum Theory, Vol.III, Radiation and High Energy Physics, Academic Press, New York and London (1962) p. 42.Google Scholar
  107. 106.
    N. N. Bogoliubov and D. V. Shirkov, Introduction to the theory of quantized fields, 3rd. Ed. John Wiley & Sons, New York (1980) p. 41 sqq.Google Scholar
  108. 107.
    S. De Leo, Duffin-Kemmer-Petiau equation on the quaternion field, Progr. Theor. Phys., 94 (1995) pp. 1109–1120.CrossRefGoogle Scholar
  109. 108.
    G. Boillat, Involutions des systèmes conservatifs, C. R. Acad. Sci. Paris, 307 I (1988) pp. 891–894.MathSciNetzbMATHGoogle Scholar
  110. 109.
    A. Lichnerowicz, Théories relativistes de la gravitation et de l’électromagnétisme, Masson, Paris (1955).zbMATHGoogle Scholar
  111. 110.
    Y. Choquet-Bruhat, Problème de Cauchy pour les modèles gravitationnels avec termes de Gauss-Bonnet, C. R. Acad. Sci. Paris, 306 I (1988) pp. 445–450.MathSciNetzbMATHGoogle Scholar
  112. 111.
    C. M. Dafermos, Quasilinear hyperbolic systems with involutions, Arch. Ratl. Mech. Analys., 94 (1986) pp. 373–389.MathSciNetzbMATHCrossRefGoogle Scholar
  113. 112.
    G. Boillat, Symétrisation des systèmes d’équations aux dérivées partielles avec densité d’énergie convexe et contraintes, C. R. Acad. Sci. Paris, 295 I (1982) pp. 551–554.MathSciNetzbMATHGoogle Scholar
  114. 113.
    S. K. Godunov, Symmetric form of the equations of magnetohydrodynamics (in Russian), Prepr. Akad. Nauk S.S.S.R. Sib. Otd., Vychisl. Tsentr, 3 No1 (1972) p. 26.Google Scholar
  115. 114.
    G. Boillat and S. Pluchino, Sopra l’iperbolicità dei sistemi con vincoli e considerazioni sul superfluido e la magnetoidrodinamica, ZAMP 36 (1985) pp. 893–900.MathSciNetGoogle Scholar
  116. 115.
    S. Lundquist, Studies in magneto-hydrodynamics, Arkiv för Fysik, 5 (1952) p. 297.MathSciNetzbMATHGoogle Scholar
  117. 116.
    L. Landau and E. Lifchitz, Mécanique des fluides, MIR, Moscou (1971).zbMATHGoogle Scholar
  118. 117.
    G. Grioli, Ed., Macroscopic theories of superfluids, Internat. Meeting, Accad. Naz. dei Lincei, Rome, May 1988. Cambridge University Press (1991).Google Scholar
  119. 118.
    G. Boillat and A. Muracchini, On the symmetric conservative form of Landau’s superfluid equations, ZAMP, 35 (1984) pp. 282–288; On a special form of the hydrodynamic superfluid equations, Ibid., 36 (1985) pp.901–904; Thermodynamic conditions for a symmetric form of superfluid equations, N. Cim. 9 D (1987) pp.253–259.zbMATHCrossRefGoogle Scholar
  120. 119.
    G. Boillat and T. Ruggeri, Hyperbolic principal subsystems: entropy, convexity and subcharacteristic conditions, Arch. Ratl. Mech. Analys. (to appear).Google Scholar
  121. 120.
    T.-P. Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys., 108 (1987) pp. 153–175.MathSciNetzbMATHCrossRefGoogle Scholar
  122. 121.
    G.-Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservative laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 67 (1994) pp.787–830.MathSciNetzbMATHCrossRefGoogle Scholar
  123. 122.
    W. Weiss, Hierarchie der Erweiterten Thermodynamik, Dissertation TU Berlin (1990).Google Scholar
  124. 123.
    C. Cercignani and A. Majorana, Analysis of thermal and shear waves according to the B. G. K. kinetic model, ZAMP, 36 (1985) pp. 699–711.MathSciNetzbMATHCrossRefGoogle Scholar
  125. 124.
    H. Ott, Lorentz-Transformation der Wärme und der Temperatur, Zs. f. Phys., 175 (1963) pp. 70–104.zbMATHCrossRefGoogle Scholar
  126. 125.
    H. Arzeliès, Relativistic transformation of temperature and some other thermodynamical quantities (in French), N. Cim., 35 (1965) pp. 792–804.CrossRefGoogle Scholar
  127. 126.
    C. Møller, The Theory of Relativity, 2nd Ed., Clarendon Press, Oxford (1972).Google Scholar
  128. 127.
    J. Putterman, Superfluid hydrodynamics, North Holland, Amsterdam (1974).Google Scholar
  129. 128.
    J. R. Dorroh, Nonlinear symmetric first-order systems, J. Math. Analys. Appls., 91 (1983) pp. 523–526.MathSciNetzbMATHCrossRefGoogle Scholar
  130. 129.
    G. Boillat, On symmetrization of partial differential systems, Applicable Analys., 57 (1995) pp. 17–21.MathSciNetzbMATHCrossRefGoogle Scholar
  131. 130.
    G. Boillat, Limitation des vitesses de choc quand la densité d’énergie est convexe et les contraintes involutives, C. R. Acad. Sci. Paris, 297I (1983) pp. 141–143.MathSciNetzbMATHGoogle Scholar
  132. 131.
    G. Boillat, Evolution des chocs caractéristiques dans les champs dérivant d’un principe variationnel, J. Maths. Pures et Appl., 56 (1977) pp. 137–147.MathSciNetzbMATHGoogle Scholar
  133. 13.
    E. Hölder, Historischer Überblick zur mathematischen Theorie von Unstetigkeitswellen seit Riemann und Christoffel, in E. B. Christoffel: The Influence of his Work on Mathematics and the Physical Sciences, Internat. Symp., Aachen, 1979 (1981).Google Scholar
  134. 133.
    P. Germain, Schock waves, jump relations and structure, Adv. in Appl. Mech. Ed. by Chia-Shun Yih, Vol. 12, Academic Press, New York (1972) pp. 131–144.Google Scholar
  135. 134.
    P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional Conf. Series in Appl. Math., No 11, SIAM, Philadelphia (1973).zbMATHCrossRefGoogle Scholar
  136. 135.
    C. M. Dafermos and R. J. Diperna, The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Diff. Eqs., 20 (1976) pp. 90–114.MathSciNetzbMATHCrossRefGoogle Scholar
  137. 136.
    M. Berger and M. Berger, Perspectives in Nonlinearity, W.A. Benjamin Inc., New York (1968) p.137.zbMATHGoogle Scholar
  138. 137.
    G. Boillat and T. Ruggeri, Limite de la vitesse des chocs dans les champs à densité d’énergie convexe, C. R. Acad. Sci. Paris, 289 A (1979) pp. 257–258.MathSciNetzbMATHGoogle Scholar
  139. 138.
    G. Boillat and A. Strumia, Limitation des vitesses d’onde et de choc quand la densité relativiste d’entropie (ou d’énergie) est convexe, Ibid., 307 I (1988) pp. 111–114.MathSciNetzbMATHGoogle Scholar
  140. 139.
    B. L. Keyfitz and H. C. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Ratl. Mech. Analys., 72 (1980) pp. 219–241.MathSciNetzbMATHCrossRefGoogle Scholar
  141. 140.
    C. M. Dafermos, Admissible wave fans in nonlinear hyperbolic systems, Ibid., 106 (1989) pp. 243–260.MathSciNetzbMATHCrossRefGoogle Scholar
  142. 141.
    T.-P. Liu, Admissible solutions of hyperbolic conservation laws, Memoirs Am. Math. Soc., 240 (1981) pp. 1–78.MathSciNetGoogle Scholar
  143. 142.
    G. Boillat, Hamilton-Jacobi equation for shocks with a convex entropy density, in 7th Conf. on Waves and Stability in Continuous Media, Bologna, 1993. Ed. by S. Rionero & T. Ruggeri. Quaderno CNR. Series in Adv. in Math. & Appl. Sciences, Vol. 23, World Scientific, Singapore, New Jersey, London, Hong-Kong (1994) pp. 22–25.Google Scholar
  144. 143.
    G. Boillat, Chocs avec contraintes et densité d’énergie convexe, C. R. Acad. Sci. Paris, 295 I (1982) pp. 747–750.MathSciNetzbMATHGoogle Scholar
  145. 144.
    G. Boillat, De la nature des chocs, in Onde e stabilità nei mezzi continui, Cosenza, giugno 1983. Quaderni del CNR, Catania (1986) pp. 35–39.Google Scholar
  146. 145.
    G. Boillat, De la vitesse de choc considérée comme valuer propre, C. R. Acad. Sci. Paris, 302 I (1986) pp. 555–557.MathSciNetzbMATHGoogle Scholar
  147. 146.
    P. D. Lax, Shock waves and entropy in Contribution to non linear functional analysis. Ed. by Zarantonello, Academic Press, New York (1971).Google Scholar
  148. 147.
    C. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws, Arch. Ratl. Mech. Analys., 107 (1989) p. 127.MathSciNetzbMATHCrossRefGoogle Scholar
  149. 148.
    D. Fusco, Alcune considerazioni sulle onde d’urto in fluidodinamica, Atti Sem. Mat. Fis. Univ. Modena, 28 (1979) p. 223.MathSciNetzbMATHGoogle Scholar
  150. 149.
    N. Virgopia and F. Ferraioli, On the shock wave generating function in a single mixture of gases, N. Cim., D 7 (1988) p. 151.CrossRefGoogle Scholar
  151. 150.
    A. Strumia, A detailed study of entropy jump across shock waves in relativistic fluid dynamics, N. Cim., B 92 (1986) p. 91.MathSciNetCrossRefGoogle Scholar
  152. 151.
    W. Dreyer and S. Seelecke, Entropy and causality as criteria for the existence of shock wave in low temperature ideal conduction, Cont. Mech. Thermodyn., 4 (1992) pp. 23–36.MathSciNetzbMATHCrossRefGoogle Scholar
  153. 152.
    L. Seccia, Shock wave propagation and admissibility criteria in a non linear dielectric medium, Ibid.,, 7 (1995) pp. 277–296.MathSciNetzbMATHGoogle Scholar
  154. 153.
    N. Manganaro and G. Valenti, On shock propagation for a compressible fluid supplemented by a generalized von Kármán law, Atti. Sem. Mat. Fis. Univ. Modena, XXXVIII (1990) pp. 109–122.MathSciNetzbMATHGoogle Scholar
  155. 154.
    G. Boillat and A. Muracchini, The structure of the characteristic shocks in constrained symmetric systems with applications to magnetohydrodynamics, Wave Motion, 11 (1989) pp. 297–307.MathSciNetzbMATHCrossRefGoogle Scholar
  156. 155.
    G. Boillat, Chocs caractéristiques et ondes simples exceptionnelles pour les systèmes conservatifs à intégrale d’énergie; forme explicite de la solution, C. R. Acad. Sci. Paris, 280 A (1975) pp. 1325–1328.MathSciNetzbMATHGoogle Scholar
  157. 156.
    T. Ruggeri, On same properties of electromagnetic shock waves in isotropic nonlinear materials, Boll. Un. Mat. Ital., 9 (1974) pp. 513–522.MathSciNetGoogle Scholar
  158. 157.
    G. Boillat, Expression explicite des chocs caractéristiques de croisement, C. R. Acad. Sci. Paris, 312 I (1991) pp. 653–656.MathSciNetzbMATHGoogle Scholar
  159. 158.
    A. Jeffrey, Magnetohydrodynamics, Oliver & Boyd, London (1966).zbMATHGoogle Scholar
  160. 159.
    H. Cabannes, Theoretical magnetofluid-dynamics, Academic Press, New York (1970).Google Scholar
  161. 160.
    G. Boillat and A. Muracchini, Characteristic shocks of crossing velocities in magnetohydrodynamics, NoDEA, 3, (1996), pp. 217–230.MathSciNetzbMATHCrossRefGoogle Scholar
  162. 161.
    G. Boillat and T. Ruggeri, Characteristic shocks: completely and strictly exceptional systems, Boll. Un. Mat. Ital., 15 A (1978) pp.197–204.MathSciNetzbMATHGoogle Scholar
  163. 162.
    P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964) pp.611–613.MathSciNetzbMATHCrossRefGoogle Scholar
  164. 163.
    G. Boillat, Shock relations in nonlinear electrodynamics, Phys. Lett., 40 A (1972) pp.9–10.CrossRefGoogle Scholar
  165. 164.
    G. Boillat and T. Ruggeri, Euler equations for nonlinear relativistic strings. Introduction of a new Lagrangian, Progr. Theor. Phys., 60 (1978) pp.1928–1929.CrossRefGoogle Scholar
  166. 165.
    A. Greco, On the strict exceptionality for a subsonic flow, in 2o Congresso Naz. AIMETA, Università di Napoli, Facoltà di Ingegneria, 4 (1974) pp.127–134.Google Scholar
  167. 166.
    G. Boillat, A relativistic fluid in which shock fronts are also wave surfaces, Phys. Lett., 50 A (1974) pp.357–358.CrossRefGoogle Scholar
  168. 167.
    L. Brun, Ondes de choc finies dans les solides élastiques, in Mechanical waves in solids. Ed. by J. Mandel & L. Brun, Springer, Vienna (1975).Google Scholar
  169. 168.
    A. Morro, Atti Accad. Naz. Lincei Rend., 64 (1978) p.177; Acta Mech., 38 (1981) p.241; On stablity in the interaction between shock waves and acoustic waves, in Onde e stabilità nei mezzi continui, Catania, Nov.1981. Quaderni del CNR, Catania (1982) pp.18–47.MathSciNetGoogle Scholar
  170. 169.
    A. Strumia, Transmission and reflexion of a discontinuity wave through a characteristic shock in nonlinear optics, Riv. Mat. Univ. Parma, 4 (1978) p.15.MathSciNetzbMATHGoogle Scholar
  171. 170.
    G. Boillat and T. Ruggeri, Reflection and transmission of discontinuity waves through a shock wave. General theory including also the case of characteristic shocks, Proc. Roy. Soc. Edinburgh, 83 A (1979) pp. 17–24.MathSciNetzbMATHCrossRefGoogle Scholar
  172. 171.
    A. Donato and D. Fusco, Nonlinear wave propagation in a layered halfspace, Int. J. Nonlinear Mechanics, 15 (1980) pp.497–503.MathSciNetzbMATHCrossRefGoogle Scholar
  173. 172.
    A. M. Anile and S. Pennisi, On the mathematical structure of the relativistic magnetofluid-dynamics, Ann. Inst. Henri Poincaré, 46 (1987) p.27.MathSciNetzbMATHGoogle Scholar
  174. 173.
    A. M. Anile, Relativistic fluids and magneto-fluids, Cambridge University Press, 1989.Google Scholar
  175. 174.
    G. Boillat and T. Ruggeri, Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light, Continuum Mech. Thermodyn., 1 (1989) pp.47–52.MathSciNetzbMATHCrossRefGoogle Scholar
  176. 175.
    A. Lichnerowicz, Ondes de choc, ondes infinitésimales et rayons en hydrodynamique et magnétohydrodynamique relativistes, in Relativistic Fluid Dynamics, Corso CIME, Bressanone, 1970. Ed. by C. Cattaneo, Cremonese, Roma (1971); Shock waves in relativistic magnetohydrodynamics under general assumptions, J. Math. Phys., 17 (1976) p.2125.Google Scholar
  177. 176.
    W. Israel, Relativistic theory of shock waves, Proc. Roy. Soc., 259 A (1960) p.129.MathSciNetzbMATHCrossRefGoogle Scholar
  178. 177.
    A. Lichnerowicz, Magnetohydrodynamics: waves and shock waves in curved space-time. Mathematical Studies, 14. Kluwer Academic Publ. Group, Dordrecht (1994).zbMATHCrossRefGoogle Scholar
  179. 178.
    Y. Choquet-Bruhat, Fluides chargés non abéliens de conductivité infinie, C. R. Acad. Sci. Paris, 314 I (1992) pp.87–91; Hydrodynamics and magnetohydrodynamics of Yang-Mills fluids, in 7th Conf. on Waves and Stability in continuous media, Bologna (1993) (op. cit.).MathSciNetzbMATHGoogle Scholar
  180. 179.
    S. Pennisi, A covariant and extended model for relativistic magnetofluiddynamics, Ann. Inst. Henri Poincaré, 58 (1993) pp.343–361.MathSciNetzbMATHGoogle Scholar
  181. 180.
    G. Boillat, Sur l’élimination des contraintes involutives, C. R. Acad. Sci. Paris, 318 I (1994) pp.1053–1058.MathSciNetGoogle Scholar
  182. 181.
    C. Cattaneo, Sulla conduzione del calore, Atti. Sem. Mat. Fis. Univ. Modena, 3 (1948) p.1.MathSciNetzbMATHGoogle Scholar
  183. 182.
    T. Ruggeri, Struttura dei sistemi alle derivate parziali compatibili con un principio di entropia e termodinamica estesa, Suppl. Boll. Un. Mat. Ital., 4 (1985) p.261; Thermodynamics and symmetric hyperbolic systems, Rend. Sem. Mat. Univ. Torino, special issue: Hyperbolic equations, 167 (1987).MathSciNetGoogle Scholar
  184. 183.
    A. Morro and T. Ruggeri, Non-equilibrium properties of solids obtained from second-sound measurements, J. Phys. C: Solid State Phys., 21 (1988) p.1743.CrossRefGoogle Scholar
  185. 184.
    F. Franchi and A. Morro, Global existence and asymptotic stability in nonlinear heat conduction, J. Math. Analys. Appls., 188 (1994) pp.590–609.MathSciNetzbMATHCrossRefGoogle Scholar
  186. 185.
    G. B. Nagy, O. E. Ortiz and O. A. Reula, The behavior of hyperbolic heat equations’ solutions near their parabolic limits, J. Math. Phys., 35 (1994) pp.4334–4356.MathSciNetzbMATHCrossRefGoogle Scholar
  187. 186.
    A. M. Anile, S. Pennisi and M. Sammartino, A thermodynamical approach to Eddington factors, J. Math. Physics, 32 (1991) pp.544–550.MathSciNetzbMATHCrossRefGoogle Scholar
  188. 187.
    G. Boillat, Convexité et hyperbolicité en électrodynamique non linéaire, C. R. Acad. Sci. Paris, 290 A (1980) pp.259–261.MathSciNetzbMATHGoogle Scholar
  189. 188.
    G. Boillat and A. Giannone, A constraint on wave, radial and shock velocities in non-linear electromagnetic materials, ZAMP, 40 (1989) pp.285–289.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

There are no affiliations available

Personalised recommendations