Advertisement

On the time integration of parabolic differential equations

  • P. J. van der Houwen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 912)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BRANDT, A., Multi-level adaptive techniques (MLAT) for singular perturbation problems. In Numerical Analysis of singular perturbation problems, P.W. Hemker and J.J.H. Miller eds., Academic Press, 1979.Google Scholar
  2. 2.
    FRANK, W., Solution of linear systems by Richardson's method, J. Assoc. Comput. Mach. 7, 274–286 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    FORSYTHE, G.E. & WASOW, W.R., Finite difference methods for partial differential equations, John Wiley, New York (1960).zbMATHGoogle Scholar
  4. 4.
    GENTZSCH, W. & SCHLŰTER, A., “Űber ein Einschrittverfahren mit zyklischer Schrittweitenänderung zur Lősung parabolischer Differentialgleichungen ZAMM 58, T415–T416 (1978).zbMATHGoogle Scholar
  5. 5.
    HEMKER, P.W., Introduction to multigrid methods, Nieuw Arch. voor Wiskunde 29, 71–101 (1981).MathSciNetzbMATHGoogle Scholar
  6. 6.
    -, On the structure of an adaptive multi-level algorithm, BIT 20, 289–301 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    HOUWEN, P.J. VAN DER, Construction of integration formulas for initial value problems, North-Holland (1977).Google Scholar
  8. 8.
    HOUWEN, P.J. VAN DER & SOMMEIJER, B.P., On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values ZAMM 60, 479–485 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    HOUWEN, P.J. VAN DER & SOMMEIJER, B.P., Analysis of Richardson iteration in multigrid methods for nonlinear parabolic differential equations, Report NW105/81, Math. Centrum, Amsterdam 1981 (prepublication).zbMATHGoogle Scholar
  10. 10.
    JELTSCH, R. & NEVANLINNA, O., Stability of explicit time discretizations for solving initial value problems, Report no. 30, University of Oulu 1979 (prepublication).Google Scholar
  11. 11.
    LOMAX, H., On the construction of highly stable, explicit, numerical methods for integrating coupled ordinary differential equations with parasitic eignevalues, NASA Technical Note NASATN D/4547 (1968).Google Scholar
  12. 12.
    MANTEUFFEL, T.A., The Techebyshev iteration for non-symmetric linear systems, Num. Math. 28, 307–327 (1977).MathSciNetCrossRefGoogle Scholar
  13. 13.
    METZGER, CL. Méthodes de Runge-Kutta de rang supérieur à l'ordre. These (troisieme cycle), Université de Grenoble (1967).Google Scholar
  14. 14.
    RIHA, W., Optimal stability polynomials, Computing 9, 37–43 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    SAUL'YEV, V.K., Integration of equations of parabolic type by the methods of nets, Pergamon Press, New York (1964).zbMATHGoogle Scholar
  16. 16.
    SOMMEIJER, B.P. & VERWER, J.G., A performance evaluation of a class of Runge-Kutta-Chebyshev methods for solving semi-discrete parabolic differential equations, Report NW 91/80, Math. Centrum, Amsterdam (1980).zbMATHGoogle Scholar
  17. 17.
    STETTER, H.J., Analysis of discretization methods for ordinary differential equations, Springer-Verlag, Berlin (1973).CrossRefzbMATHGoogle Scholar
  18. 18.
    -, The defect correction principle and discretization methods, Num. Math. 29, 425–443 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    YUAN'CHZHAO-DIN, Some difference schemes for the solution of the first boundary value problem for linear differential equations with partial derivatives, Thesis, Moscow State University (1958).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • P. J. van der Houwen

There are no affiliations available

Personalised recommendations