Advertisement

Verma modules and Schubert cells: A dictionary

  • Sergei Gelfand
  • Robert MacPherson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 924)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [BG] J.N. Bernstein, S.I. Gelfand: Tensor products of finite and infinite-dimensional representations of semisimple Lie algebras, Compositio Math., 1980 (in press).Google Scholar
  2. [BGG1] J.N. Bernstein, I.M. Gelfand, S.I. Gelfand: The structure of representations generated by vectors of highest weight. Funk. Anal. Appl. 5 (1971), No 1, 1–9 (in Russian).MathSciNetCrossRefGoogle Scholar
  3. [BGG2] J.N. Bernstein, I.M. Gelfand, S.I. Gelfand: On a category of-modules, Funk. Anal. Appl., 10 (1976), No 2, 1–8 (in Russian).MathSciNetzbMATHGoogle Scholar
  4. [D] P. Deligne: Letter to G. Lusztig and D. Kazhdan, 20 April 1979.Google Scholar
  5. [De] M. Demazure: Desingularisation des variétés de Schubert generalisé, Annales Scientifiques de l'E.N.S. t. 7 fasc. 1 (1974)Google Scholar
  6. [D1] J. Dixmier: Algèbres envellopantes, Paris, Gauthier-Villars, 1974.Google Scholar
  7. [GM1] M. Goresky and R. MacPherson: La dualité de Poincaré pour les espaces singulières, C.R. Acad. Sci. t. 284, Serie A (1977), 1549–1551.MathSciNetzbMATHGoogle Scholar
  8. [GM2] M. Goresky and R. MacPherson: Intersection Homology Theory, Topology 19 (1980) pp. 135–162.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [GM3] M. Goresky and R. MacPherson: Intersection Homology II—to appear.Google Scholar
  10. [G] R. Godement: Théorie des faisceaux, Act. Sci. et Ind 1252, Hermann, Paris, 1958.zbMATHGoogle Scholar
  11. [H] R. Hartshorne: Residues and Duality, Springer Lect. Notes Math. No 20, 1966.Google Scholar
  12. [J] J. Jantzen: Moduln mit einem höchsten Gewicht, Lect. Notes Math.,... (1980), Springer-Verlag, Berlin.zbMATHGoogle Scholar
  13. [KL1] D. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras, Inventiones Math., 53 (1979), 165–184.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [KL2] D. Kazhdan, G. Lusztig: Schubert varieties and Poincaré duality, Geometry of the Laplace Operator, Proc. Sympos. Pure Math. XXXVI, Amer. Math. Soc. (1980), pp. 185–203.Google Scholar
  15. [Sch] W. Schmid: Two character identities for semisimple Lie groups in Lect. Notes Math., 587 (1977) Springer-Verlag, Berlin.Google Scholar
  16. [Vel] J-L. Verdier: Categories Dérivées, SGA41/2, Springer Lect. Notes Math. No 569 (1977), pp. 262–312MathSciNetCrossRefGoogle Scholar
  17. [Ve2] J-L. Verdier: Dualité dans la cohomologie des espaces localement compacts, Sem. Bourbaki (1965) no 300.Google Scholar
  18. [V1] D. Vogan: Irreductible characters of semisimple Lie groups, I Duke Math. J., 46 (1979), 61–108.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [V2] D. Vogan: Irreductible characters of semisimple Lie groups, II: The Kazhdan-Lusztig conjectures, Duke Math. J., 46 (1979), 805–859.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [GJ] O. Gabber and A. Joseph: Towards the Kazhdan-Lusztig conjecture, preprint.Google Scholar
  21. [BB] A.A. Beilinson and J.N. Bernstein: C.R. Acad. Sc., 1981Google Scholar
  22. [BK] J.L. Brylinski and M. Kashiwara: Kazhdan-Lusztig conjecture and holonomic systems, preprint Ecole Polytechnique, 1980Google Scholar
  23. [DBB] P. Deligne, A.A. Beilinson, J.N. Bernstein: Luminy Conference on analysis and topology on singular varieties, to appear in Asterisque.Google Scholar
  24. [GM4] M. Goresky and R. Mac Pherson: On the topology of complex algebraic maps, La Rabida Conference on singularities, Springer Lect. Notes, to appear.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Sergei Gelfand
    • 1
  • Robert MacPherson
    • 1
  1. 1.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations