Topologies metrisables rendant continues les trajectoires d'un processus

  • S. Chevet
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 920)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    X. FERNIQUE, Régularité des trajectoires des fonctions aléatoires gaussiennes, Lecture Notes in Math. 480, (1975), 1–91.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    X. FERNIQUE, Régularité de fonctions aléatoires non gaussiennes, Ecole d'Eté de Saint-Flour 1981, (à paraître).Google Scholar
  3. [3]
    K. ITO, Canonical measurable random functions, Proc. Internat. Conf. on Functional Analysis and Related topics, (Tokyo, 1969), 369–377.Google Scholar
  4. [4]
    K. ITO et M. NISIO, On the oscillation of Gaussian processes, Math. Scand. 22, (1968), 209–223.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    V.A. ROHLIN, On the fundamental ideas of measure theory, Translations Amer. Math. Soc. série 1, vol. 10 (Functional Analysis and Measure Theory), (1962), 1–54.Google Scholar
  6. [6]
    H. SATO et Y. OKAZAKI, Separabilities of a Gaussian Radon measure, Ann. Inst. H. Poincaré A 11, (1975), 287–298.MathSciNetzbMATHGoogle Scholar
  7. [7]
    H. SATO, Souslin support and Fourier expansions of a Gaussian Radon measure, Lecture Notes in Math. 860, (1980), 299–313.CrossRefGoogle Scholar
  8. [8]
    M. TALAGRAND, La τ-régularité des mesures gaussiennes, Z. Wahrs. verw. Geb., 57, (1981), 213–221.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    B.S. TSIRELSON, Some properties of Lacunary series and Gaussian measures that are connected with uniform versions of the Egorov and Lusin properties, Theory Prob. and Appl. 20, (1975), 652–655.CrossRefGoogle Scholar
  10. [10]
    B.S. TSIRELSON, Natural modification of random processes and its application to random functional series and to Gaussian measures, Zap. Nauchn. Sem. Leningrad Otdel Mat. Inst. Steklov (LOMI) 55, (1975), 53–63 (en Russe).Google Scholar
  11. [11]
    B.S. TSIRELSON, Complement to a paper on natural modifications, Zap. Nauchn. Sem. Leningrad LOMI 72, (1976), 201–211 (en Russe).Google Scholar
  12. [12]
    N.C. JAIN et G. KALLIANPUR, Oscillation function of a multiparameter Gaussian process, Nagoya Math. J. 47, (1972), 15–28.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Yu.K. BELYAEV, Local properties of the sample functions of stationary Gaussian processes, Theory Prob. and Appl. 5, (1960), 117–120.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Yu.K. BELYAEV, Continuity and Hölder's conditions for sample functions of stationary Gaussian processes, Proc. 4th Berkeley Symposium, vol. 2, (1961), 23–33.MathSciNetGoogle Scholar
  15. [15]
    J. HOFFMANN-JORGENSEN, Integrability of semi-norms, the O−I law and the affine kernel for product measures, Studia Math. 61, (1977), 137–159.MathSciNetzbMATHGoogle Scholar
  16. [16]
    R.M. DUDLEY, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1, (1967), 290–330.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. PREKOPA, On stochastic set functions, Acta Math. Acad. Scient. Hung. 7, (1956) 215–262 et 8, (1957), 337–400.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    C. BORELL, Gaussian Radon measures on locally convex spaces, Math. Scand. 38, (1976), 265–284. *** DIRECT SUPPORT *** A00J4394 00014MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • S. Chevet
    • 1
  1. 1.Université de Clermont IIAUBIERE

Personalised recommendations