# There exists no ultimate solution to Skorokhod's problem

• Isaac Meilijson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 920)

## Abstract

Let (X,Y) be a mean zero martingale pair, i.e., X and Y possess mean zero and E(YIX)=X a.s.. It has been proved in various ways that (1) there exist stopping times τ on Brownian motion {B(t);t≥0} such that B(τ) is distributed like X and {B(tΛτ); t≥0} is uniformly integrable; and (2) for any such τ there exist stopping times τ′ such that τ≤τ′ a.s., (B(τ), B(τ′)) is distributed like (X,Y), and {B(tΛτ′); t≥0} is uniformly integrable. In other words (to explain the role of uniform integrability), a martingale pair can be embedded in a piece of Brownian motion that is itself a martingale.

We will show that unless Y lives on one or two points, there can exist no stopping time τ′ with {B(tΛτ′); t≥0} uniformly integrable and B(τ′) distributed as Y, such that whenever (X,Y) is a martingale pair there exist τ with τ≤τ′ a.s. and B(τ) distributed as X.

## Preview

Unable to display preview. Download preview PDF.

## References

1. 
Azema, J. and Yor, M. (i) Une solution simple au problème de Skorokhod. (ii) Le problème de Skorokhod: compléments a l'exposé précédent. Séminaire de Probabilités XIII, LN 721, Springer (1979).Google Scholar
2. 
Chacon, R.V. and Walsh, J.B. One dimensional potential embedding. Séminaire de Probabilités X, LN 511, Springer (1976).Google Scholar
3. 
Dubins, L.E. On a theorem of Skorokhod. Ann. Math. Statist. 39, 2094–2097 (1968).
4. 
Dubins, L.E. and Gilat, D. On the distribution of maxima of martingales. Proc. of the A.M.S. 68, No. 3, 337–338 (1978).
5. 
Meilijson, I. and Nádas, A. On convex majorization with an application to the length of critical paths. J. Appl. Prob. 16, No. 3, 671–677 (1979).
6. 
Meyer, P.A. Probabilités et Potentiel. Hermann (1966).Google Scholar
7. 
Meyer, P.A. Le schéma de remplissage en temps continu. Séminaire de Probabilités VI, LN 258, Springer (1972).Google Scholar
8. 
Monroe, I. On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43, No. 4, 1293–1311 (1972).
9. 
Root, D.H. On the existence of certain stopping times on Brownian motion. Ann. Math. Statist. 40, 715–718 (1969).
10. 
Rost, H. The stopping distributions of a Markov process. Inv. Math. 14, 1–16 (1971).
11. 
Rost, H. Skorokhod stopping times of minimal variance. Séminaire de Probabilités X, LN 511, Springer (1976).Google Scholar
12. 
Skorokhod, A. Studies in the theory of random processes. Addison-Wesley, Reading (1965). 