# There exists no ultimate solution to Skorokhod's problem

• Isaac Meilijson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 920)

## Abstract

Let (X,Y) be a mean zero martingale pair, i.e., X and Y possess mean zero and E(YIX)=X a.s.. It has been proved in various ways that (1) there exist stopping times τ on Brownian motion {B(t);t≥0} such that B(τ) is distributed like X and {B(tΛτ); t≥0} is uniformly integrable; and (2) for any such τ there exist stopping times τ′ such that τ≤τ′ a.s., (B(τ), B(τ′)) is distributed like (X,Y), and {B(tΛτ′); t≥0} is uniformly integrable. In other words (to explain the role of uniform integrability), a martingale pair can be embedded in a piece of Brownian motion that is itself a martingale.

We will show that unless Y lives on one or two points, there can exist no stopping time τ′ with {B(tΛτ′); t≥0} uniformly integrable and B(τ′) distributed as Y, such that whenever (X,Y) is a martingale pair there exist τ with τ≤τ′ a.s. and B(τ) distributed as X.

## References

1. [1]
Azema, J. and Yor, M. (i) Une solution simple au problème de Skorokhod. (ii) Le problème de Skorokhod: compléments a l'exposé précédent. Séminaire de Probabilités XIII, LN 721, Springer (1979).Google Scholar
2. [2]
Chacon, R.V. and Walsh, J.B. One dimensional potential embedding. Séminaire de Probabilités X, LN 511, Springer (1976).Google Scholar
3. [3]
Dubins, L.E. On a theorem of Skorokhod. Ann. Math. Statist. 39, 2094–2097 (1968).
4. [4]
Dubins, L.E. and Gilat, D. On the distribution of maxima of martingales. Proc. of the A.M.S. 68, No. 3, 337–338 (1978).
5. [5]
Meilijson, I. and Nádas, A. On convex majorization with an application to the length of critical paths. J. Appl. Prob. 16, No. 3, 671–677 (1979).
6. [6]
Meyer, P.A. Probabilités et Potentiel. Hermann (1966).Google Scholar
7. [7]
Meyer, P.A. Le schéma de remplissage en temps continu. Séminaire de Probabilités VI, LN 258, Springer (1972).Google Scholar
8. [8]
Monroe, I. On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43, No. 4, 1293–1311 (1972).
9. [9]
Root, D.H. On the existence of certain stopping times on Brownian motion. Ann. Math. Statist. 40, 715–718 (1969).
10. [10]
Rost, H. The stopping distributions of a Markov process. Inv. Math. 14, 1–16 (1971).
11. [11]
Rost, H. Skorokhod stopping times of minimal variance. Séminaire de Probabilités X, LN 511, Springer (1976).Google Scholar
12. [12]
Skorokhod, A. Studies in the theory of random processes. Addison-Wesley, Reading (1965).