A.s. Approximation results for multiplicative stochastic integrals

  • R. L. Karandikar
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 920)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    BICHTELER (K.). Stochastic integration and Lp theory of semimartingales. Ann. Prob. 9, 1981, p. 49–89.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2].
    BICHTELER (K.). Stochastic integrators. Bull. A.M.S. 1 (new ser.) 1979, p. 761–765.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3].
    DELLACHERIE (C.). Quelques applications du lemme de Borel-Cantelli à la théorie des semimartingales. Sém. Prob. XII, 1978, p. 742–745 (Lecture Notes in M. 649, Springer-Verlag).Google Scholar
  4. [4].
    EMERY (M.). Stabilité des solutions de équations différentielles stochastiques. Application aux intégrales multiplicatives stochastiques. ZW 41, 1978, p. 241–262.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5].
    EMERY (M.). Equations différentielles stochastiques lipschitziennes. Etude de la stabilité. Sém. Prob. XII, 1979, p. 281–293 (Lecture Notes in M. no721).MathSciNetzbMATHGoogle Scholar
  6. [6].
    IBERO (M.). Intégrales stochastiques multiplicatives et construction de diffusions sur un groupe de Lie. Bull. Scc. Math. France, 100, 1976, p. 175–191.MathSciNetzbMATHGoogle Scholar
  7. [7].
    ITO (K.) and WATANABE (S.). Introduction to stochastic differential equations. Proc. Intern. Symp. S.D.E. Kyoto, 1976. Kinokuniya Publ. Tokyo.Google Scholar
  8. [8].
    KARANDIKAR (R.L.). Pathwise solutions of stochastic differential equations. To appear in Sankhyā.Google Scholar
  9. [9].
    KAZAMAKI (N.). On a stochastic integral equation with respect to a weak martingale. Tohoku M. J. 26, 1974, p. 53–63.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10].
    KAZAMAKI (N.). Changes of time, stochastic integrals, and weak martingales. ZW 22, 1972, p. 25–32.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11].
    MASANI (P.R.). Multiplicative Riemann integration in normed rings. Trans. Amer. M. Soc. 61, 1947, p. 147–192.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12].
    METIVIER (M.) et PELLAUMAIL (J.). On a stopped Doob inequality and general stochastic equations. Ann. Prob. 8, 1980, p. 96–114.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • R. L. Karandikar
    • 1
  1. 1.Indian Statistical InstituteStat-Math. DivisionCalcuttaIndia

Personalised recommendations