Advertisement

Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K. T. Chen

  • Michel Fliess
  • Dorothée Normand-Cyrot
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 920)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    BOURBAKI (N.)—Groupes et algèbres de Lie, Chap. II et III, Hermann, Paris, 1972.zbMATHGoogle Scholar
  2. [2]
    CHEN (K.T.)—Integrations of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math., 65, 1957, p. 163–178.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    CHEN (K.T.)—Integrations of paths—a faithful representation of paths by non-commutative formal power series, Trans. Amer. Math. Soc., 89, 1958, p. 395–407.MathSciNetGoogle Scholar
  4. [4]
    CHEN (K.T.)—Iterated path integrals, Bull. Amer. Math. Soc., 83, 1977, p. 831–879.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    FLIESS (M.)—Stabilité d'un type élémentaire d'équations différentielles stochastiques à bruits vectoriels, Stochastics, 4, 1981, p. 205–213.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    FLIESS (M.)—Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France, 109, 1981, p. 3–40.MathSciNetzbMATHGoogle Scholar
  7. [7]
    GAVEAU (B.)—Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math., 139, 1977, p. 95–153.MathSciNetCrossRefGoogle Scholar
  8. [8]
    HOCHSCHILD (G.)—La structure des groupes de Lie (traduit de l'anglais), Dunod, Paris, 1968.zbMATHGoogle Scholar
  9. [9]
    ITÔ (K.)—On multiple Wiener integrals, J. Math. Soc. Japan, 3, 1951, p. 157–169.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    KOBAYASHI (S.)—Transformation groups in differential geometry, Springer-Verlag, Berlin, 1972.CrossRefzbMATHGoogle Scholar
  11. [11]
    KRENER (A.J.) et LOBRY (C.)—The complexity of stochastic differential equations, Stochastics, 4, 1981, p. 193–203.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    KUNITA (H.)—On the representation of solutions of stochastic differential equations, in “Séminaire de Probabilités XIV 1978/79” (Réd. J. Azéma et M. Yor), Lect. Notes Math. 784, p. 282–304, Springer-Verlag, Berlin, 1980.CrossRefGoogle Scholar
  13. [13]
    KUNITA (H.)—On the decomposition of solutions of stochastic differential equations, in “Stochastic Integrals” (Réd. D. Williams), Lect. Notes Math. 851, p. 213–255, Springer-Verlag, Berlin, 1981.CrossRefGoogle Scholar
  14. [14]
    LIE (S.)—Theorie der Transformationsgruppen, 3. Bd., Teubner, Leipzig, 1893 (Réimpression: Chelsea, New York, 1970).zbMATHGoogle Scholar
  15. [15]
    MALLIAVIN (P.)—Stochastic calculus of variations and hypoelliptic operators, in “Proc. Internat. Symp. Stochastic Differential Equations” (Réd. K. Itô), p. 195–263, Wiley, New York, 1978.Google Scholar
  16. [16]
    MEYER (P.A.)—Géométrie stochastique sans larmes, in “Séminaire de Probabilités XV 1979/80” (Réd. J. Azéma et M. Yor), Lect. Notes Math. 850, p. 44–102, Springer-Verlag, Berlin, 1981.CrossRefGoogle Scholar
  17. [17]
    PALAIS (R.)—A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc. 22, Providence, R.I., 1957.Google Scholar
  18. [18]
    REE (R.)—Lie elements and an algebra associated with shuffles, Ann. of Math., 68, 1958, p. 210–220.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    YAMATO (Y.)—Stochastic differential equations and nilpotent Lie algebras, Z. Wahr. verw. Geb., 47, 1979, p. 213–229. *** DIRECT SUPPORT *** A00J4394 00007MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Michel Fliess
    • 1
  • Dorothée Normand-Cyrot
    • 1
  1. 1.Laboratoire des Signaux & SystèmesC.N.R.S.-E.S.E.Gif-sur-Yvette

Personalised recommendations