Skip to main content

Martingales in manifolds—Definition examples, and behaviour under maps

  • Conference paper
  • First Online:
Séminaire de Probabilités XVI, 1980/81 Supplément: Géométrie Différentielle Stochastique

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 921))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BERNARD, A., CAMPBELL, E. A., & DAVIE, A. M., Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier, 29.1 (1979), 207–228.

    Article  MathSciNet  MATH  Google Scholar 

  2. DARLING, R. W. R. Approximating Ito integrals of differential forms, and mean forward derivatives. (1981) To appear.

    Google Scholar 

  3. DARLING, R. W. R. A Girsanov theorem for diffusions on a manifold (1981) To appear.

    Google Scholar 

  4. EELLS, J. & LEMAIRE, L. A report on harmonic maps. Bull. London Math. Soc. 10 (1978), pp. 1–68.

    Article  MathSciNet  MATH  Google Scholar 

  5. ELIASSON, H. I. Geometry of manifolds of maps. J. Differential Geometry I (1967), 169–194

    MathSciNet  MATH  Google Scholar 

  6. FUGLEDE, B. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28.2 (1978), 107–144

    Article  MathSciNet  MATH  Google Scholar 

  7. GREENE, R. E. & WU, H. Embedding of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier 25 (1975) 215–235

    Article  MathSciNet  MATH  Google Scholar 

  8. ISHIHARA, TORU A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19–2 (1979) 215–229

    MathSciNet  MATH  Google Scholar 

  9. KENDALL, W. S. Brownian motion and a generalized little Picard theorem. To appear 1982.

    Google Scholar 

  10. KOBAYASHI, S., & NOMIZU, K. Foundation of differential geometry, Vols I and II, Interscience, New York (1963, 1969)

    MATH  Google Scholar 

  11. MEYER, P. A. Géometrie stochastique sans larmes. Sem. de Probabilités XV, 1979/1980, Springer LNM 850, pp. 44–102.

    MATH  Google Scholar 

  12. MEYER, P. A. A differential geometric formalism for the Ito calculus. Springer LNM 851 (1981) 256–270

    MathSciNet  Google Scholar 

  13. SCHWARTZ, L. Semi-martingales sur des variétés, et martingales conformes. (1980) Springer LNM 780.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Azéma Marc Yor

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag

About this paper

Cite this paper

Darling, R.W.R. (1982). Martingales in manifolds—Definition examples, and behaviour under maps. In: Azéma, J., Yor, M. (eds) Séminaire de Probabilités XVI, 1980/81 Supplément: Géométrie Différentielle Stochastique. Lecture Notes in Mathematics, vol 921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092652

Download citation

  • DOI: https://doi.org/10.1007/BFb0092652

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11486-4

  • Online ISBN: 978-3-540-39167-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics