Advertisement

Martingales in manifolds—Definition examples, and behaviour under maps

  • R. W. R. Darling
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 921)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BERNARD, A., CAMPBELL, E. A., & DAVIE, A. M., Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier, 29.1 (1979), 207–228.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    DARLING, R. W. R. Approximating Ito integrals of differential forms, and mean forward derivatives. (1981) To appear.Google Scholar
  3. [3]
    DARLING, R. W. R. A Girsanov theorem for diffusions on a manifold (1981) To appear.Google Scholar
  4. [4]
    EELLS, J. & LEMAIRE, L. A report on harmonic maps. Bull. London Math. Soc. 10 (1978), pp. 1–68.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    ELIASSON, H. I. Geometry of manifolds of maps. J. Differential Geometry I (1967), 169–194MathSciNetzbMATHGoogle Scholar
  6. [6]
    FUGLEDE, B. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28.2 (1978), 107–144MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    GREENE, R. E. & WU, H. Embedding of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier 25 (1975) 215–235MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    ISHIHARA, TORU A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19–2 (1979) 215–229MathSciNetzbMATHGoogle Scholar
  9. [9]
    KENDALL, W. S. Brownian motion and a generalized little Picard theorem. To appear 1982.Google Scholar
  10. [10]
    KOBAYASHI, S., & NOMIZU, K. Foundation of differential geometry, Vols I and II, Interscience, New York (1963, 1969)zbMATHGoogle Scholar
  11. [11]
    MEYER, P. A. Géometrie stochastique sans larmes. Sem. de Probabilités XV, 1979/1980, Springer LNM 850, pp. 44–102.zbMATHGoogle Scholar
  12. [12]
    MEYER, P. A. A differential geometric formalism for the Ito calculus. Springer LNM 851 (1981) 256–270MathSciNetGoogle Scholar
  13. [13]
    SCHWARTZ, L. Semi-martingales sur des variétés, et martingales conformes. (1980) Springer LNM 780.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • R. W. R. Darling
    • 1
  1. 1.Forschungsschwerpunkt Dynamische Systeme, Universität BremenBremen 33West Germany

Personalised recommendations