Martingales in manifolds—Definition examples, and behaviour under maps

  • R. W. R. Darling
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 921)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BERNARD, A., CAMPBELL, E. A., & DAVIE, A. M., Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier, 29.1 (1979), 207–228.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    DARLING, R. W. R. Approximating Ito integrals of differential forms, and mean forward derivatives. (1981) To appear.Google Scholar
  3. [3]
    DARLING, R. W. R. A Girsanov theorem for diffusions on a manifold (1981) To appear.Google Scholar
  4. [4]
    EELLS, J. & LEMAIRE, L. A report on harmonic maps. Bull. London Math. Soc. 10 (1978), pp. 1–68.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    ELIASSON, H. I. Geometry of manifolds of maps. J. Differential Geometry I (1967), 169–194MathSciNetzbMATHGoogle Scholar
  6. [6]
    FUGLEDE, B. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28.2 (1978), 107–144MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    GREENE, R. E. & WU, H. Embedding of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier 25 (1975) 215–235MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    ISHIHARA, TORU A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19–2 (1979) 215–229MathSciNetzbMATHGoogle Scholar
  9. [9]
    KENDALL, W. S. Brownian motion and a generalized little Picard theorem. To appear 1982.Google Scholar
  10. [10]
    KOBAYASHI, S., & NOMIZU, K. Foundation of differential geometry, Vols I and II, Interscience, New York (1963, 1969)zbMATHGoogle Scholar
  11. [11]
    MEYER, P. A. Géometrie stochastique sans larmes. Sem. de Probabilités XV, 1979/1980, Springer LNM 850, pp. 44–102.zbMATHGoogle Scholar
  12. [12]
    MEYER, P. A. A differential geometric formalism for the Ito calculus. Springer LNM 851 (1981) 256–270MathSciNetGoogle Scholar
  13. [13]
    SCHWARTZ, L. Semi-martingales sur des variétés, et martingales conformes. (1980) Springer LNM 780.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • R. W. R. Darling
    • 1
  1. 1.Forschungsschwerpunkt Dynamische Systeme, Universität BremenBremen 33West Germany

Personalised recommendations