Advertisement

Geometrie differentielle stochastique (bis)

  • P. A. Meyer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 921)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    BISMUT (J.M.). Mécanique Aléatoire. L.N. in M. 866, Springer 1981Google Scholar
  2. [2].
    DANKEL (Th. G.). Mechanics on manifolds and the incorporation of spin into Nelson’s stochastic mechanics. Arch. Rat. Mech. Anal. 37, 1971, p. 192–221.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3].
    DOHRN (D.) et GUERRA (F.). Nelson’s stochastic mechanics on Riemannian manifolds. Lett. al Nuovo Cimento. 22, 1978, p. 121–127.MathSciNetCrossRefGoogle Scholar
  4. [4].
    DYNKIN (E.B.). Diffusions of Tensors. DAN 9, 1968, p. 532–535 (éd. anglaise).MathSciNetzbMATHGoogle Scholar
  5. [5].
    IKEDA (N.) et WATANABE (S.). Diffusion processes and stochastic differential equations. North-Holland 1981.Google Scholar
  6. [6].
    ITO (K.). The brownian motion and tensor fields on Riemannian manifolds. Proc. Int. Congress Math. Stockholm 1962, p. 536.Google Scholar
  7. [8].
    NELSON (E.). Dynamical theories of Brownian motion. Princeton 1967).Google Scholar
  8. [7].
    NAGASAWA (M.). Segregation of a population in an environment. J. Math. Biology 9, 1980, p. 213–235.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9].
    YANO (K.) et ISHIHARA (S.). Tangent and cotangent bundles. New-York, Marcel Dekker 1973.zbMATHGoogle Scholar
  10. [10].
    YASUE (K.). Stochastic calculus of variations. J. Funct. An. 41, 1981, p. 327–340 (référence ajoutée, sur la méc. de Nelson).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • P. A. Meyer
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis PasteurStrasbourg CedexFrance

Personalised recommendations