Geometrie differentielle stochastique (bis)

  • P. A. Meyer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 921)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    BISMUT (J.M.). Mécanique Aléatoire. L.N. in M. 866, Springer 1981Google Scholar
  2. [2].
    DANKEL (Th. G.). Mechanics on manifolds and the incorporation of spin into Nelson’s stochastic mechanics. Arch. Rat. Mech. Anal. 37, 1971, p. 192–221.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3].
    DOHRN (D.) et GUERRA (F.). Nelson’s stochastic mechanics on Riemannian manifolds. Lett. al Nuovo Cimento. 22, 1978, p. 121–127.MathSciNetCrossRefGoogle Scholar
  4. [4].
    DYNKIN (E.B.). Diffusions of Tensors. DAN 9, 1968, p. 532–535 (éd. anglaise).MathSciNetzbMATHGoogle Scholar
  5. [5].
    IKEDA (N.) et WATANABE (S.). Diffusion processes and stochastic differential equations. North-Holland 1981.Google Scholar
  6. [6].
    ITO (K.). The brownian motion and tensor fields on Riemannian manifolds. Proc. Int. Congress Math. Stockholm 1962, p. 536.Google Scholar
  7. [8].
    NELSON (E.). Dynamical theories of Brownian motion. Princeton 1967).Google Scholar
  8. [7].
    NAGASAWA (M.). Segregation of a population in an environment. J. Math. Biology 9, 1980, p. 213–235.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9].
    YANO (K.) et ISHIHARA (S.). Tangent and cotangent bundles. New-York, Marcel Dekker 1973.zbMATHGoogle Scholar
  10. [10].
    YASUE (K.). Stochastic calculus of variations. J. Funct. An. 41, 1981, p. 327–340 (référence ajoutée, sur la méc. de Nelson).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • P. A. Meyer
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis PasteurStrasbourg CedexFrance

Personalised recommendations