Advertisement

When is Br(X)=Br′(X)?

  • Raymond T. Hoobler
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 917)

Keywords

Local Ring Regular Ring Constant Sheaf Galois Cohomology Noetherian Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1).
    M. Artin, A. Grothendieck, and J. L. Verdier, Cohomologie Étale des Schemas, Seminaire de Géometrie Algébrique, 1963–64, Lecture Notes in Mathematics, V. 269, 270, 305, Springer Verlag, Berlin-New York, 1972.Google Scholar
  2. 2).
    M. Artin, On the joins of Hensel rings, Advances in Mathematics, V. 7(1971), 282–296.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3).
    M. Auslander and O. Goldman, The Brauer group of a commutative ring, Transactions Amer. Math. Soc., V. 97 (1960), 367–409.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4).
    H. Bass, Algebraic K-Theory, Mathematics Lecture Notes Series, W. A. Benjamin, New York, 1968.zbMATHGoogle Scholar
  5. 5).
    V. G. Berkovich, The Brauer group of abelian varieties, Funktsional'nyi Analiz I Ego Prilozheniya, V. 6, (1972), 10–15, Functional Analysis and its applications (English translation), V. 6 (1973), 180–184.MathSciNetGoogle Scholar
  6. 6).
    A. D. Bernard, Commutative rings with operators (Galois theory and ramifications), Proc. London Math Soc. (3) V. 28, (1974), 274–290.MathSciNetCrossRefGoogle Scholar
  7. 7).
    A. Grothendieck, Elements de Géometrie Algébrique, IV, Publication Mathematiques, I.H.E.S., no. 32, Paris, 1968.Google Scholar
  8. 8).
    S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton Univ. Press, Princeton, 1952.CrossRefzbMATHGoogle Scholar
  9. 9).
    O. Gabber, Some theorems on Azumaya algebras, Le Groupe de Brauer, Lecture Notes in Mathematics, V. 844, Springer Verlag, Berlin-New York, 1981.zbMATHGoogle Scholar
  10. 10).
    G. Garfinkel, A torsion version of the Chase-Rosenberg exact sequence, Duke Math. J., V. 42 (1975), 195–210.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11).
    A. Grothendieck, Dix Exposes sur la Cohomologie des Schemas, North Holland, Amsterdam, 1969.Google Scholar
  12. 12).
    J. Giraud, Cohomologie non abelienne, Grundlehren der Mathematischen Wissenschaften, V. 179, Springer-Verlag, Berlin-New York, 1971.zbMATHGoogle Scholar
  13. 13).
    R. Hoobler, thesis, University of California, 1966.Google Scholar
  14. 14).
    R. Hoobler, Brauer groups of abelian schemes, Annales Scientifique de d'E.N.S., (4) V. 5 (1972), 45–70.MathSciNetzbMATHGoogle Scholar
  15. 15).
    R. Hoobler, Cohomology of purely inseparable Galois coverings, J. Reine Angew. Math., V. 266 (1974), 183–199.MathSciNetzbMATHGoogle Scholar
  16. 16).
    R. Hooblen, A cohomological interpretation of Brauer groups of rings, Pacific J. Math., V. 86 (1980), 89–92.MathSciNetCrossRefGoogle Scholar
  17. 17).
    R. Hoobler, Br(X)=Br′(X) if X is the separated union of two affines, to appear.Google Scholar
  18. 18).
    M. A. Knus and M. Ojanguren, Cohomologie étale et groupe de Brauer Le Groupe de Brauer, Lecture Notes in Mathematics, V. 844, Springer Verlag, Berlin-New York, 1981.zbMATHGoogle Scholar
  19. 19).
    J. Milne, Étale Cohomology, Princeton University Press, Princeton, 1980.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Raymond T. Hoobler

There are no affiliations available

Personalised recommendations