Brauer-Severi varieties

  • M. Artin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 917)


Line Bundle Rational Point Linear Subspace Cohomology Class Left Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S.A. Amitsur, Genetic splitting fields of central simple algebras, Ann. of Math. 62, pp. 8–43 (1955).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Bloch, Torsion Algebraic Cycles, K2 and Brauer Groups of Function Fields, in: Groupe de Brauer, LNM 844, Springer Verlag, Berlin, pp. 75–102 (1981).CrossRefGoogle Scholar
  3. [3]
    F. Châtelet, Variations sur un thème de H. Poincaré, Ann. Sci. E.N.S. 61, pp. 249–300 (1944).zbMATHGoogle Scholar
  4. [4]
    F. Châtelet. Géométrie diophantienne et théorie des algèbres, Sém. Dubreil, exp. 17 (1954–1955).Google Scholar
  5. [5]
    A. Grothendieck, Le Groupe de Brauer I,II, III, in: Dix exposés sur la cohomologie des schémas, pp. 46–188, North Holland, Amsterdam (1968).Google Scholar
  6. [6]
    R. Hartshorne, Algebraic Geometry, Springer Verlag, Berlin and New York (1977).CrossRefzbMATHGoogle Scholar
  7. [7]
    M. Noether, Rational le Ausführung der Operationen in der Theorie der algebraischen Funktionen, Math. Ann. 23, pp. 311–358 (1884).MathSciNetCrossRefGoogle Scholar
  8. [8]
    O.T. O'Meara, Introduction to quadratic forms, Springer Verlag, Berlin and New York (1963).CrossRefzbMATHGoogle Scholar
  9. [9]
    H. Poincaré, Sur les propriétés arithmétiques des courbes algébriques, J. Math. Pures Appl. 5ème série, 7, 161–234 (1901).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Artin

There are no affiliations available

Personalised recommendations