Local structure of maximal orders on surfaces

  • M. Artin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 917)


Exact Sequence Isomorphism Class Left Ideal Maximal Order Division Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Artin, Algebraic approximation of structures over complete local rings, Pub. Math. Inst. Hautes Etudes Sci. No. 36 (1969) 23–58.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc. 3 (1972) 75–95.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960) 1–24.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960) 367–409.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Deuring, Algebren, Springer, Berlin 1935.CrossRefzbMATHGoogle Scholar
  6. [6]
    A. Grothendieck, A general theory of fibre spaces with structure sheaf, Univ. Kansas Report No. 4, 1955.Google Scholar
  7. [7]
    A. Grothendieck and J. Diendonné, Eléments de géométrie algébrique IV (Seconde Partie), Pub. Math. Inst. Hautes Etudes Sci. No. 24 (1965).Google Scholar
  8. [8]
    A. Grothendieck, Le groupe de Brauer I-III Dix exposés sur la cohomologie des schémas, North Holland, Amsterdam, 1968.Google Scholar
  9. [9]
    J.E. Humphreys, Linear algebraic groups, Springer, New York 1975.CrossRefzbMATHGoogle Scholar
  10. [10]
    J.S. Milne, Étale cohomology, Princeton Univ., Princeton 1980.zbMATHGoogle Scholar
  11. [11]
    J.-P. Serre, Corps Locaux, Hermann, Paris, 1962.zbMATHGoogle Scholar
  12. [12]
    J.-P. Serre, Cohomologie galoisienne, Lec. Notes in Math. No. 5, Springer, Berlin, 1965.CrossRefzbMATHGoogle Scholar
  13. [13]
    J.-P. Serre, Local class field theory, in Algebraic number theory, J.W.S. Cassels and A. Fr″ohlich editors. Academic Press, London 1967.Google Scholar
  14. [14]
    I. Reiner, Maximal Orders, Academic Press, London 1975.zbMATHGoogle Scholar
  15. [15]
    G.J. Janusz, Tensor products of orders, J. London Math. Soc. ser 2, 20 (1979) 186–192.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Artin

There are no affiliations available

Personalised recommendations