Splitting rings for azumaya quaternion algebras

  • George Szeto
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 917)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Chase, D. Harrison and A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52, 1965.Google Scholar
  3. 3.
    F. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J. Math. 2 (1966), 287–295.MathSciNetzbMATHGoogle Scholar
  4. 4.
    F. Demeyer and E. Ingraham, Separable algebras over commutative rings, Lecture notes in mathematics, No. 181, Springer-Verlag, Berlin-Heidelberg-New York, 1971.CrossRefzbMATHGoogle Scholar
  5. 5.
    S. Parimala and R. Sridharan, Projective modules over quaternion algebras, J. Pure Applied Algebras, 9 (1977), 181–193.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    G. Szeto, On generalized quaternion algebras, Internat. J. Math. Math. Sci. 2 (1980), 237–245.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    G. Szeto, A characterization of a cyclic Galois extension of commutative rings, J. Pure Applied Algebras, 16 (1980), 315–322.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • George Szeto
    • 1
  1. 1.Department of MathematicsBradley UniversityPeoriaU.S.A.

Personalised recommendations