Some remarks on Brauer groups of Krull domains

  • M. Orzech
  • A. Verschoren
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 917)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Orzech, Divisorial modules and Krull morphisms, Queen's Mathematics Preprint 1981-12Google Scholar
  2. [2]
    M. Orzech, Brauer Groups and Class Groups for a Krull Domain, these proceedings.Google Scholar
  3. [3]
    B. Pareigis, Non-additive ring and module theory IV: The Brauer group of a symmetric monoidal category, in: Brauer groups, Evanston 1975, LNM 549, Springer-Verlag, Berlin 1976, 112–133.Google Scholar
  4. [4]
    B. Stenström, Rings of quotients, Grundlehren der Math. Wiss. 217, Springer Verlag, Berlin 1975.CrossRefzbMATHGoogle Scholar
  5. [5]
    A. Verschoren, On the Picard group of a Grothendieck category, Comm. in Algebra 8 (1980) 1169–1194.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Verschoren, The Brauer group of a quasi-affine scheme, these proceedings.Google Scholar
  7. [7]
    S. Yuan, Reflexive Modules and Algebra Class Groups over Noetherian Integrally Closed Domains, J. of Algebra 32 (1974) 405–417.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Orzech
    • 1
  • A. Verschoren
    • 2
  1. 1.Queen's UniversityKingstonCanada
  2. 2.U.I.A.University of AntwerpWilrijkBelgium

Personalised recommendations