Advertisement

Brauer group and diophantine geometry: A cohomological approach

  • Werner Hűrlimann
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 917)

Keywords

Exact Sequence Galois Group Pezzo Surface Quaternion Algebra Local Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BSD]
    B.J. Birch and H.P.F. Swinnerton-Dyer The Hasse problem for rational surfaces, J. reine angew. Math. 274 (1975), 164–174.MathSciNetzbMATHGoogle Scholar
  2. [CF]
    J.W.S. Cassels and A. Frőhlich, Algebraic Number Theory, Thompson, Washington, 1967.zbMATHGoogle Scholar
  3. [CTCS]
    J.-L. Colliot-Thélène, D. Coray et J.-J. Sansuc, Descente et principe de Hasse pour certaines variétés rationnelles, J. reine angew. Math. 320 (1980), 150–191.MathSciNetzbMATHGoogle Scholar
  4. [EM]1
    S. Eilenberg and S. MacLane, Algebraic cohomology groups and loops, Duke Math. J. 14 (1947), 435–463.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [H]
    R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer (1977).Google Scholar
  6. [I]
    V.A. Iskovskih, A counterexample to the Hasse principle for a system of two quadratic forms in five variables, Mat. Zametki 10 (1971), 253–257 (Transl.: Math. Notes 10 (1971), 575–577).MathSciNetGoogle Scholar
  7. [M]
    Ju. I. Manin, Cubic forms: Algebra, Geometry, Arithmetic, North-Holland, Amsterdam (1974).zbMATHGoogle Scholar
  8. [R]
    I. Reiner, Maximal orders, Academic Press, New-York (1975).zbMATHGoogle Scholar
  9. [T]
    J. Tate, Homology of Noetherian rings and local rings, Illinois J. of Math. 1 (1957).Google Scholar
  10. [V]
    M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Lecture Notes in Math. 800 (1980).Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Werner Hűrlimann
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations